POOR LEGIBILITY
ONE OR MORE PAGES IN THIS DOCUMENT ARE DIFFICULT TO READ DUE TO THE QUALITY OF THE ORIGINAL

March 28, 2008

USEPA 75 Hawthorne Street San Francisco, CA 94105 Attn: Linda Ketellapper, Case Developer Mail Code SFD-7-5

Ms Ketellapper:

In regards to the "embedded" information request as discussed in the letter dated March 13, 2008 and signed by Thanne Cox, I must apologize for not responding to the original request. It was my intention to answer all questions posed to me by the EPA. I feel very confident that if the request had been included in the attachment with all the other questions, then you most assuredly would have had my response by now. Again, my apologies for the confusion.

In regards to the request, the EPA is requesting the status of all the obligations and activities related to the remediation currently on-going at the Pilot Chemical site, located in Sante Fe Springs, CA. If I am mistaken, please call me to help clarify.

Pilot Chemical is currently treating soil/groundwater on our site in compliance with the Los Angeles Regional Water Quality Control Board Remedial Action Plan dated October 2000 and revised on February 29, 2001. The site is identified by SLIC # 383.

A copy of the RAP and the most recent semi-annual groundwater monitoring progress reports has been included.

Essentially, Pilot is actively treating soil on site with a soil vapor extraction system. The site currently has five chemicals of concern to include Benzene, Toluene, Ethylbenzene, Total Xylenes and 1,2 DCA. We are also sampling for a myriad of other chemicals in order to assist us in determining what contaminants may be coming onto our site from off-site sources.

The overall approach of the active remediation has been for the removal of 1,2 DCA via the SVE system. At that time, a catalytic or thermal oxidizer would be installed in order to remediate the remaining soil. Once completed, groundwater cleanup using chemical oxidation would begin. This approach is being utilized in order to avoid the unnecessary costs of adding a scrubber to the oxidizer.

• Page 2 March 28, 2008

During my recent trip to the plant, meetings were held with both the LARWQCB and the Santa Fe Springs Fire Department. Both organizations were briefed on the project and Pilot reinforced its commitment to clean the site up to levels acceptable to both organizations.

If I can be of further service, please do not hesitate to call at 513-326-0625.

Regards,

Matthew J. Leary

Matthew J. Leary Corporate EHSS Manager Pilot Chemical Company

Revised Remedial Action Plan (SLIC NO. 383)

Pacific Edge Engineering, Inc. Project Number 0199.0019.002

Pilot Chemical Company 11756 Burke Street Santa Fe Springs, California

October, 2000

Prepared for:

Pilot Chemical Company

11756 Burke Street

Santa Fe Springs, California

Prepared by:

Pacific Edge Engineering, Inc. 22772 Centre Drive, Suite 230 Lake Forest, California 92630

Craig A. Stolz, P.E. Principal Engineer

TABLE OF CONTENTS

Section	<u>on</u>	<u>Page</u>
1.0	INTRODUCTION	1-1
1.1	Purpose	
1.2	Background Information	1-1
i	1.2.1 Location	1-3
i	1.2.2 Facility Description	<i>1-3</i>
1.3	GEOLOGY AND HYDROGEOLOGY	1-3
i	1.3.1 Regional	I-3
i	1,3,2 Local	I-3
i	1.3.3 Surface Water	I-4
i	1.3.4 Water Supply Wells	1-4
2.0	REMEDIAL INVESTIGATION SUMMARY	2-1
2.1	+ +	
1	2.1.1 Chemicals of Interest in Soil	
2.2		
	2.2.1 Chemicals of Interest in Groundwater	2-3
2	2.2.2 Groundwater Extraction and Aquifer Test	
3.0	REMEDIATION OBJECTIVES	3-1
3.1	Mass Removal areas	3-1
	3.1.1 Soil	3-1
	3.1.2 Groundwater	
4.0	EVALUATION OF REMEDIAL ALTERNATIVES	4-1
	4.1.1 Remedial Alternatives - Soil	
	4.1.2 Remedial Alternatives - Groundwater	
4.2		
	4.2.1 Engineering Evaluation Results	
	4.2.2 Effectiveness and Implementability	
	4.2.3 Cost	
5.0	SELECTED REMEDIAL ALTERNATIVE	
5.1		
5.2		
	5.2.1 Chemical Oxidation and Natural Attenuation Considerations	5-3
6.0	REMEDIAL ALTERNATIVE IMPLEMENTATION	
6.1	SOIL REMEDIATION	6-1
1	6.1.1 SVE Pilot Test	
	6.1.2 SVE Implementation Plan	6-1
,	6.1.3 Reporting	6-4
6.2	GROUNDWATER REMEDIATION	
	6.2.1 In-Situ Chemical Oxidation Bench-Scale Test	6-5
	6.2.2 In-situ Chemical Oxidation Pilot Test	6-6
	6.2.3 Full Scale In-Situ Chemical Oxidation and Natural Attenuation Implementation	6-6
	6.2.4 In-Situ Chemical Oxidation Reporting	
	6.2.5 Monitored Natural Attenuation	
7.0	SCHEDULE	7-1
7.1	SOIL REMEDIATION	7-1
7.2		

TABLES

Table 1	Soil Sample Results
Table 2	Average Depth to Groundwater
Table 3	Historical Groundwater Analytical Results
Table 4	Average Chemical Concentration in Groundwater
Table 5	Evaluation Summary – Remedial Alternatives for Soil
Table 6	Evaluation Summary – Remedial Alternatives for Groundwater
Table 7	Total COI Concentration – MW-1
Table 8	Total COI Concentration – MW-2
Table 9	Total COI Concentration – MW-3
Table 10	Total COI Concentration – MW-4
Table 11	Total COI Concentration – MW-5
Table 12	Total COI Concentration - MW-6
Table 13	Total COI Concentration – MW-7
Table 14	Total COI Concentration – MW-8
Table 15	Total COI Concentration – MW-9
Table 16	Total COI Concentration – MW -10
Table 17	Total COI Concentration – MW –11
Table 18	SVE Pilot Test Wells
	FIGURES
Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Boring and Well Locations
Figure 4	Cross Section in A - A'
Figure 5	Cross Section B - B'
Figure 6	Mass Removal Area – Upper 40 Feet
Figure 7	M. D
Figure 8	Mass Removal Area – Silt/Clay
•	Distribution of Benzene in Groundwater
Figure 9	_
Figure 9 Figure 10	Distribution of Benzene in Groundwater
-	Distribution of Benzene in Groundwater Distribution of Xylenes in Groundwater
Figure 10	Distribution of Benzene in Groundwater Distribution of Xylenes in Groundwater Distribution of Toluene in Groundwater
Figure 10 Figure 11	Distribution of Benzene in Groundwater Distribution of Xylenes in Groundwater Distribution of Toluene in Groundwater Distribution of Ethylbenzene in Groundwater
Figure 10 Figure 11 Figure 12	Distribution of Benzene in Groundwater Distribution of Xylenes in Groundwater Distribution of Toluene in Groundwater Distribution of Ethylbenzene in Groundwater Distribution of 1,2 DCA in Groundwater
Figure 10 Figure 11 Figure 12 Figure 13	Distribution of Benzene in Groundwater Distribution of Xylenes in Groundwater Distribution of Toluene in Groundwater Distribution of Ethylbenzene in Groundwater Distribution of 1,2 DCA in Groundwater Target Area – Groundwater

1.0 INTRODUCTION

1.1 PURPOSE

This revised Remedial Action Plan (RAP) has been prepared by Pacific Edge Engineering, Inc. (Pacific Edge) on behalf of Pilot Chemical Company (Pilot) to identify, select, and present a remedial alternative which addresses chemicals of interest in soil and groundwater at their Santa Fe Springs, California site (Site). The lead agency for the Site is the California Regional Water Quality Control Board – Los Angeles Region (LARWQCB). Semi-annual groundwater monitoring is on going at the Site. A Site location map is provided as Figure 1.

This revised RAP was prepared using previous soil and groundwater investigation data obtained for the Site.

1.2 BACKGROUND INFORMATION

Background information regarding the Site was obtained from the following reports, all of which are contained in the LARWQCB file:

- ➤ "Soil Assessment and Preliminary Shallow Groundwater Investigation, Underground Xylene Storage Tank Cluster," prepared by Clayton Environmental Consultants, Inc., dated September 28, 1988.
- > "Groundwater Extraction Design," prepared by Clayton Environmental Consultants, Inc., dated March 6, 1989.
- > "Results of Soil Venting Feasibility Study," prepared by Decon Environmental Services Inc., dated November 8, 1989.
- ➤ "Final Report Additional Subsurface Soil and Groundwater Assessment," prepared by Kleinfelder, Inc., dated July 1991.
- > "Subsurface Soil Investigation at the Former Underground Storage Tank Location," prepared by McLaren/Hart, Inc., dated October 1991.
- > "Remedial Action Plan for Former Underground Storage tank Location," prepared by McLaren/Hart, Inc., dated June 1994.
- > "Former Underground Storage Tank Farm Soil and Groundwater Sampling Report," prepared by McLaren/Hart, Inc., dated February 23, 1998.
- ➤ "Results of Semi-Annual Groundwater Monitoring Activities," prepared by McLaren/Hart, Inc., dated January 1999.
- "Groundwater Monitoring Report, Semi-Annual," prepared by Pacific Edge, dated April 2000.

Four (4) former underground storage tanks (USTs) were used to store ammonia and xylene. These tanks are listed below and were located at the southwestern portion of the property. A site plan showing the former tank locations is provided as Figure 2.

Tank No.	Tank Size (gallons)	Material Stored	Status	
T-10	10,000	Xylene	Removed 1990	
T-18	12,000	Xylene	Removed 1990	
T-19	12,000	Xylene	Removed 1990	
T-20	12,000	Ammonia	Removed 1990	

In 1990, Pilot removed the 4 USTs. A closure report was submitted to the Los Angeles County Department of Public Works (LACDPW) in accordance with tank removal requirements. The Site was referred to the LARWQCB in a LACDPW letter dated December 3, 1990. Due to soil and groundwater contamination (total xylenes, toluene, and ethylbenzene) resulting from a UST release, the LARWQCB designated the Site as SLIC # 383.

In June 1994, McLaren/Hart, Inc. submitted a RAP to the LARWQCB. This RAP addressed contamination in the upper 35-feet of soil in the vicinity of the former USTs. The RAP proposed using soil vapor extraction (SVE) to remediate total xylenes, toluene, and ethylbenzene. On September 29, 1994, McLaren/Hart, Inc. provided additional details to the LARWQCB regarding the implementation of the proposed SVE system.

The LARWQCB notified Pilot in a letter dated September 29, 1994 that they would need to enter into an oversight agreement with the LARWQCB. On November 11, 1994, Pilot entered into the LARWQCB's agreement for voluntary cleanup and abatement activities for the Site.

On February 8, 1995, the LARWQCB approved the RAP with the following conditions:

- > conduct a soil and groundwater investigation to define the extent of 1,2 dichloroethane (DCA) and trichloroethylene (TCE) at the Site;
- > expand the proposed remediation to include areas where 1,2 DCA and TCE are identified during the future investigation;
- > expand remediation efforts to include contaminants found below the depth of 35-feet in the clay unit and the lower sandy unit. The LARWQCB further required that the clay and lower sandy unit be addressed during groundwater remediation;
- > submit a SVE monitoring and testing program prior to system startup; and
- > continue on-going groundwater monitoring and sampling.

On February 7, 1996, McLaren/Hart submitted a workplan for a soil and groundwater investigation to define the extent of 1,2 DCA and TCE. This workplan was approved by the LARWQCB on June 6, 1996. Results of this investigation were presented in McLaren/Hart, Inc.'s report "Former Underground Storage Tank Farm Soil and Groundwater Sampling Report," dated February 23, 1998. Based on the findings, McLaren/Hart, Inc. provided the following conclusions:

- > 1,2 DCA and TCE were not detected extensively in the areas sampled and therefore releases have not occurred in these areas;
- > total xylenes, toluene, and ethylbenzene were detected in the areas sampled;
- > 1,2 DCA was found in groundwater samples. This data supports groundwater data collected during previous groundwater monitoring events; and
- > groundwater samples collected during the investigation for carbon tetrachloride and chloroform support previous groundwater monitoring data, which indicate an off-site source.

On March 3, 1998, the LARWQCB concurred with McLaren/Hart, Inc.'s conclusions and directed Pilot to submit a revised RAP incorporating the information from the recent investigation. In addition, the LARWQCB requested Pilot propose site specific soil cleanup levels in accordance with their "Interim Site Assessment & Cleanup Guidebook," dated May 1996.

1.2.1 Location

The Pilot Chemical Company site (Site) is located at 11756 Burke Street in Santa Fe Springs, California. The Site is located in the southwest ¼ of the southeast ¼ of the southeast ¼ of section 30 of township 2 south, range 11 west San Bernardino baseline and meridian. The Site borders Burke Street on the north, Dice Road on the east, and industrial facilities on the west and south. A residential area is located northwest of the Site.

1.2.2 Facility Description

The Site is approximately 4.3 acres in size. The Site is used to manufacture detergent for industrial purposes and utilizes aboveground tanks (and formerly USTs) as part of their operations. Aboveground tanks are located on the western portion of the Site and within the old warehouse. The aboveground storage tanks are all located within containment structures.

1.3 GEOLOGY AND HYDROGEOLOGY

1.3.1 Regional

The site lies within the Santa Fe Springs Plain area of the coastal plain of Los Angeles County, California. The Santa Fe Springs Plain is a low, slightly rolling topographic feature that has been warped by the Santa Fe Springs-Coyote Hills anticlinal system. This plain dips gently both to the northeast (toward Whittier) and to the southwest (toward the Downey Plain), with an elevation difference of 175 to 200 feet above sea level.

The major structural feature in the area is the Whittier fault zone, which is approximately 2.5 miles northeast of the site along the southern flank of the Puente Hills. This west-northwest trending fault zone has a oblique net slip estimated at 15,000 feet.

1.3.2 Local

The site is located on upper Pleistocene-aged alluvium of the Lakewood Formation. The Lakewood Formation overlies the lower Pleistocene San Pedro Formation, the Pleistocene Pico and Repetto Formations, and the Miocene Puente Formation.

The average surface elevation for the Site is approximately 152 feet above mean sea level. Soil logging at the Site has occurred to a maximum depth of 76 feet below ground surface. Generally, soil lithology consists primarily of alternating intervals of fine to medium-grained sand and silty sand and clayey silt (Kleinfelder, July 1991). A clay unit underlies the silty sand unit. This clayey unit contains sand lenses and extends from the base of the silty sand unit (35 to 40 feet) to approximately 55 feet below surface (McLaren/Hart, June 1994).

During the installation of on-site monitoring wells, the first occurrence of groundwater was encountered at approximately 55 feet below ground surface (Kleinfelder, July 1991). The static water level measured in on-site wells during 1991 ranged between 47 to 51 feet (Kleinfelder, July 1991). This rise in water level between the first occurrence and static water levels indicates that the groundwater is under hydrostatic pressure and is confined by the clayey unit. The

groundwater flow direction is toward the south-southwest with a gradient of approximately 0.0046 feet per foot (Pacific Edge, April 2000).

1.3.3 Surface Water

The San Gabriel River, the only surface water within 1-mile of the site, is approximately 1-mile west of the site (Figure 1). In this area, the river is contained within a channel having concrete walls with an open bottom.

1.3.4 Water Supply Wells

One (1) water production well has been identified within a one-mile radius of the site. This well is located behind the Santa Fe Springs Fire Station No. 2. Fire Station No. 2 is located at 8634 Dice Road, approximately 700 feet from the Site. The following information was obtained from the Water Replenishment District of Southern California and the City of Santa Fe Springs:

Well I.D.	2S-11W-30R-3S
Owner	City of Santa Fe Springs
Installation Date	July 15, 1961
Total Depth .	900-feet below surface
Screened Interval	200 - 288 feet below surface
	300 – 900 feet below surface
Status	Active

The approximate location of this well is shown on Figure 1.

2.0 REMEDIAL INVESTIGATION SUMMARY

This section summarizes soil and groundwater remedial investigations conducted at the Site. These investigations are documented in the following reports:

- "Soil Assessment and Preliminary Shallow Groundwater Investigation, Underground Xylene Storage Tank Cluster," prepared by Clayton Environmental Consultants, Inc., dated September 28, 1988.
- > "Groundwater Extraction Design," prepared by Clayton Environmental Consultants, Inc., dated March 6, 1989.
- "Results of Soil Venting Feasibility Study," prepared by Decon Environmental Services Inc., dated November 8, 1989.
- ➤ "Final Report Additional Subsurface Soil and Groundwater Assessment," prepared by Kleinfelder, Inc., dated July 1991.
- > "Subsurface Soil Investigation at the Former Underground Storage Tank Location," prepared by McLaren/Hart, Inc., dated October 1991.
- > "Remedial Action Plan for Former Underground Storage tank Location," prepared by McLaren/Hart, Inc., dated June 1994.
- > "Former Underground Storage Tank Farm Soil and Groundwater Sampling Report," prepared by McLaren/Hart, Inc., dated February 23, 1998.
- > "Results of Semi-Annual Groundwater Monitoring Activities," prepared by McLaren/Hart, Inc., dated January 1999.
- > "Groundwater Monitoring Report, Semi-Annual," prepared by Pacific Edge, dated April 2000.

These reports found soil and groundwater hydrocarbon contamination (benzene, ethylbenzene, toluene, and xylene) at the Site. Benzene, ethylbenzene, and toluene are attributed to their presence in the xylene formulation. 1,2 dichloroethane (1,2 DCA) has been detected in some soil samples and is found in groundwater at the Site. Other chemicals have been detected in groundwater at the Site, but are considered a result of an off-site source, with the exception of methyl blue active substances (MBAS – surfactant).

The following have been identified as chemicals of interest (COI) for soil and groundwater. The COI do not include chemicals that are believed to originate from an off-site source.

- Benzene
- > Ethylbenzene
- > Toluene
- > Total Xylenes (xylene)
- ➤ 1,2 DCA

2.1 SUMMARY OF SOIL INVESTIGATIONS

A total of 33 soil boring and geoprobe locations have been completed and 164 soil samples have been collected and analyzed during site investigations. Table 1 presents a summary of all soil sample results for chemicals detected more than once in soil. Figure 3 presents the location of all soil boring, geoprobe, hand auger, and groundwater monitor well locations.

2.1.1 Chemicals of Interest in Soil

The COI found in soil within the vicinity of the former USTs are benzene, ethylbenzene, toluene, total xylenes, and 1,2 DCA. The distribution of these chemicals is influenced by Site lithology, with the majority of contamination found in (1) the upper silty sand unit in the vicinity of the former tanks (2) the deeper zone at the sandy silt and clayey interface and (3) the clay unit itself. Based on the soil investigation data, the COI have migrated downward beneath Tank T-10 (former UST) and upon reaching the less permeable clay unit has spread laterally away from the former tank area. A summary of the number of samples with detects and the concentration range is provided below for the COI.

COI	Number Of Samples Analyzed	Number Of Detects	Concentration Range (mg/kg)
Benzene	161	6	0.007 - 0.3
Ethylbenzene	161	91	0.0071 - 3,610
Toluene	161	101	0.0064 - 10,000
Xylene	161	102	0.013 - 15,200
1,2 DCA	70	8	0.033 - 40.39

Other contaminants that have been detected once in soil at the Site include 1,1 DCA (soil sample GP-2) at a concentration of 0.055 mg/kg; chloroform (soil sample GP-5) at a concentration of 3.2 mg/kg; and 2-butanone (soil sample GP-8) at a concentration of 0.026 mg/kg.

Figures 4 and 5 are cross sections that illustrate the subsurface lithology and distribution of COIs in soil. The cross sections are from McLaren/Hart's investigation report, dated October 1991.

2.2 SUMMARY OF GROUNDWATER INVESTIGATIONS

A total of 11 groundwater monitoring wells are located at the Site. Clayton Environmental Consultants, Inc. installed groundwater wells MW-1, MW-2 and MW-3 in June 1988. In December 1988, Clayton Environmental installed extraction well EW-1 (now designated as monitoring well MW-4). This well was installed in order to conduct a groundwater extraction and aquifer test. In April 1991, Kleinfelder, Inc. installed monitoring wells MW-5 through MW-11. Well construction details are provided below. Well locations are shown on Figure 3.

Well I.D.	Diameter/Material	Total Depth	Screened Interval
		(ft)	(ft)
MW-1	2"/PVC	70	50 - 70
MW-2	2º/PVC	70	50 - 70
MW-3	2"/PVC	70	50 - 70
MW-4	5"/PVC	75	45 - 75
MW-5	4"/PVC	73	55 - 73
MW-6	4"/PVC	73	52 – 73
MW-7	4"/PVC	73	53 - 73
MW-8	4"/PVC	73	53 – 73
MW-9	4"/PVC	74	54 – 74
MW-10	4"/PVC	73	53 – 73
MW-11	4"/PVC	72	52 - 72

Historically, the groundwater flow direction at the Site is to the southwest. Monitoring well MW-5 and MW-6 are upgradient wells. Monitoring well MW-9 is the most downgradient well and is located at the southwest end of the property.

A total of 17 groundwater sampling events have occurred from April 1991 to April 2000. Semi-annual groundwater monitoring is on going at the Site, with the next scheduled event in October 2000. The semi-annual sampling event consists of sampling and measuring the water elevation of the eleven on-site wells with the purpose of updating water quality data and verifying the direction of groundwater flow at the facility.

Table 2 graphically presents the average static depth to groundwater measured in monitoring wells at the Site from July 1988 to April 2000. As shown on Table 2, the average depth to water has ranged from approximately 33 feet to 52 feet below ground surface (bgs). The current average depth to water measured in monitoring wells is approximately 46 feet bgs. During monitor well installation the first occurrence of groundwater was encountered at approximately 55 feet bgs.

Groundwater samples collected from the Site have been analyzed for the following compounds:

- > Halogenated Volatile Organic Compounds (HVOCs).
- > Volatile Organic Compounds (VOCs)
- > Methyl Blue Active Substance (MBAS) Surfactants
- ▶ pH
- > Total Petroleum Hydrocarbons diesel range (TPHd).

Table 3 presents the analytical results for groundwater sampling conducted at the Site through the April 2000 semi-annual event. The chemicals found in groundwater include total xylenes, ethylbenzene, toluene, benzene, MBAS, 1,1 DCA, 1,1 DCE, PCE, carbon tetrachloride, chloroform, 1,2 DCA, and TCE. Of these chemicals, benzene, toluene, ethylbenzene, total xylenes, 1,2 DCA, and MBAS are believed to originate from the site.

2.2.1 Chemicals of Interest in Groundwater

As shown on Table 3, the following groundwater COI are those chemicals that exceed their respective primary MCL in groundwater at the Site:

- > Benzene
- > Ethylbenzene
- > Toluene
- > Xylene
- ➤ 1,2 DCA

Additional chemicals have been detected in groundwater at the Site. These chemicals have not been included on the list of COI for the following reasons.

MBAS/Surfactants

A tracer substance, Methyl Blue Active Substances (MBAS), has been generally detected in all wells at the Site. Surfactants, which are indicated by the presence of MBAS, do not have a

primary MCL. The secondary MCL for surfactants, which addresses the consumer acceptance limit for taste, odor, or appearance of drinking water, is 0.5 mg/L.

1,1 DCA

1,1 DCA has been consistently detected in monitoring well MW-9. It should be noted that MW-9 is located at the property boundary near the neighboring facility. This facility stores numerous drums of material at the property boundary and is believed to handle large quantities of chemicals. 1,1 DCA has not been detected in any other monitoring well, including on-site upgradient wells, and has only been detected in 1 soil sample at a very low concentration, suggesting an off-site source.

1,1 DCE

1,1 DCE has also been consistently detected in monitoring well MW-9. 1,1 DCE has not been detected in any other monitoring well, including on-site upgradient wells, or any soil sample at the Site, suggesting an off-site source.

PCE

PCE has been periodically detected in upgradient wells MW-5 and MW-6 and on-site wells MW-3, 4, 7, 8, 9 and 11. A high concentration of PCE occurs in MW-5, the most upgradient well, suggesting an off-site source.

Carbon Tetrachloride

Carbon tetrachloride has been consistently detected in upgradient wells MW-5 and MW-6. Carbon tetrachloride has been periodically detected in wells MW-3, 4, 7, 8, 9, and 11 at much lower concentrations, suggesting an off-site source.

Chloroform

Chloroform has been consistently detected in upgradient wells MW-5 and MW-6. Chloroform has been periodically detected in wells MW-3, 4, 7, 8, 9, 10, and 11 at much lower concentrations, suggesting an off-site source.

TCE

TCE has been detected in all monitoring wells with the exception of MW-1 and MW-2. The average detected TCE concentration is similar for upgradient wells (MW-5 and MW-6) and wells MW-3, MW-4, MW-7, MW-8, MW-9, MW-10, and MW-11. The presence of TCE in upgradient wells and at similar concentrations found in other wells suggests an off-site source.

2.2.2 Groundwater Extraction and Aquifer Test

In August 1988 Clayton Environmental installed groundwater extraction well EW-1 (now designated MW-4). This well was installed for the purpose of conducting an extraction test for a extraction wellfield design.

A variable rate step drawdown test was performed on the extraction well at discharge rates of 3.07, 6.10, and 11.25 gallons per minute (gpm). Monitoring wells MW-1, MW-2, and MW-3 were used as drawdown observation wells during the extraction test. The variable rate test indicated that the extraction well may be capable of a long term pumping rate of 30 gpm, however this was estimated based on transient state test data.

Additionally, Clayton Environmental concluded that the estimated radius of influence of the extraction well during transient state conditions was 280 feet. Therefore, a maximum well spacing should be 420 feet.

Clayton Environmental did not perform zone of capture modeling.

3.0 REMEDIATION OBJECTIVES

Remediation efforts will focus on mass removal of the COI in soil and groundwater.

The soil COI's for the Site include benzene, ethylbenzene, toluene, xylene, and 1,2 DCA.

3.1 MASS REMOVAL AREAS

Areas identified for mass removal of the COI in soil include the upper silty sand unit from 5 feet bgs to 35 to 40 feet bgs and the less permeable unit (silty clay and clay) from approximately 35 to 40 feet to 50 feet bgs.

A discussion of the mass removal area for groundwater is provided as Section 3.1.2

3.1.1 Soil

The mass removal area for soil was identified by calculating preliminary site-specific cleanup goals using the RWQCB's "Interim Site Assessment & Cleanup Guidebook, May 1996" (guidance document). The preliminary cleanup goals for the COI were calculated based on the following site characteristics:

- ➤ Lithology
- > Distance above groundwater

Site lithology, as identified in cross section by McLaren/Hart in their October 1991 report, is illustrated on Figures 4 and 5. The first occurrence of groundwater under hydrostatic conditions was reported to be approximately 55-feet bgs by Kleinfelder, Inc.

BTEX cleanup goals were calculated using Table 4-1 of the May 1996 guidance document in the following manner:

- 1. Table 4-1 BTEX values were calculated/interpolated for each distance above groundwater using a Site lithology mix of 45% sand, 35% silt, and 20% clay.
- 2. For distances greater than 20-feet above groundwater, BTEX cleanup goals were calculated/interpolated using the values calculated for 40-feet above groundwater and the next appropriate distance above groundwater.
- 3. For distances less than 20-feet above groundwater, BTEX cleanup goals were calculated/interpolated using the 40-foot values and MCL's.

The 1,2 DCA cleanup goals were calculated using Table 5-1 of the May 1996 guidance document in the following manner:

- 1. Table 5-1 attenuation factors were calculated/interpolated using a Site lithology mix of 45% sand, 35% silt, and 20% clay.
- 2. Multiplying the calculated/interpolated attenuation factor by the MCL for 1,2 DCA (0.5 ppb).

Therefore, the following cleanup goals for BTEX and 1,2 DCA were determined based on depth to groundwater and Site lithology.

Distance Above Groundwater (ft)	Depth Below Surface (ft)	Benzene mcl=0.001 ppm	Toluene mcl=0.15 ppm	Ethylbenzene mcl=0.7 ppm	Xylenes mcl=1.75 ppm	1,2 DCA mcl=0.0005 ppm
		C (ppm)	C (ppm)	C (ppm)	C (ppm)	C (ppm)
54	1	0.07	3.67	14.25	38.95	0.009
50	5	0.06	3.33	12.91	35.25	0.007
45	10	0.05	2.90	11.22	30.62	0.006
35	20	0.04	2.04	7.86	21.38	0.004
25	30 ·	0.025	1.18	4.50	12.12	0.003
15	40	0.018	1.02	4.02	10.84	0.002
10	45	0.012	0.73	2.91	7.81	0.001
5	50	0.007	0.44	1.81	4.78	0.0007

These site-specific cleanup goals were used to define the vertical and lateral extent of COI mass removal in soil. Figures 6 and 7 present the lateral extent of the COI in soil exceeding the cleanup goals.

3.1.2 Groundwater

Table 4 presents the average concentration in groundwater for all chemicals detected in groundwater for the period January 1997 through April 2000. The average concentrations presented in Table 4 were used to plot the distribution of benzene, total xylenes, toluene, ethylbenzene, and 1,2 DCA (Figures 8 through 12). The area for mass removal of the COI in groundwater is illustrated in Figure 13.

Benzene

As shown on Figure 8, the highest average concentration of benzene is located near the former UST area at well MW-1.

Total Xylenes

As shown on Figure 9, the highest average concentration of total xylenes is located near the former UST area at well MW-1. Off-site migration of total xylenes exceeding the MCL is indicated by the average concentration for well MW-8.

<u>Toluene</u>

As shown on Figure 10, the highest average concentration of toluene is located near the former UST area at well MW-1 and well MW-2. The distribution of toluene exceeding its MCL concentration of 150 ug/L is similar to that of xylene. Off-site migration of toluene exceeding the MCL is indicated by the average concentration for well MW-8.

Ethylbenzene

As shown on Figure 11, the highest average concentration of ethylbenzene is located near the former tank area at well MW-1. The distribution of ethylbenzene exceeding its MCL concentration of 700 ug/L is similar to xylene and toluene.

<u>1,2 DCA</u>

The highest average concentration of 1,2 DCA is located in MW-10, northeast of the former tank area. Upgradient wells MW-5 and MW-6 have detected 1,2 DCA periodically.

1,2 DCA has been detected in only 8 soil samples at concentrations ranging from 0.033 to 40.39 mg/kg. The highest concentration of 40.39 mg/kg was detected in boring B6 at a depth of 2 feet bgs. At the depth of 5 feet bgs at boring B6 the concentration of 1,2 DCA decreases to 1.14 mg/kg. Because 1,2 DCA has not been found extensively in Site soils a source upgradient to the northeast of MW-10 is indicated.

5.0 SELECTED REMEDIAL ALTERNATIVE

The remedial alternative selected for the Site include:

> Soil - In-situ soil vapor extraction

Foundwater In-situ Chemical Oxidation followed by Monitored Natural Attenuation

A discussion regarding the justification for selection of these remedial alternatives is presented below.

5.1 SOIL REMEDIAL ALTERNATIVE

All ex-situ remedial alternatives require excavation of the contaminated soil. Excavation is a proven technology that could be used to remediate contaminated soil. In order to excavate the target area, shoring and underpinning would be required to protect the aboveground tanks and process equipment. In some instances, the tanks and equipment would have to be removed to facilitate remedial activities. This would cease operations at the facility during excavation soil remediation. In addition, vapor emission controls would likely be needed to provide a safe working environment and to control exposure of vapors to the employees, neighboring sites, and to the public. These factors alone make excavation, i.e. ex-situ remedial alternatives, a costly and difficult alternative to implement.

Where soil is permeable to moderately permeable in-situ SVE is often the most cost effective method for remediation of the COI. SVE is a proven technology and has gained widespread acceptance in the engineering and regulatory communities. SVE may be the most cost effective technology where there is a relatively large volume of impacted soil, the impacted soil is too deep to be easily excavated, and access is limited by aboveground structures.

Based on the evaluation of remedial alternatives and the above considerations, in-situ SVE is proposed for soil remediation at the Site. The effectiveness of SVE in the less permeable silts and clay may be limited. However, SVE has been proven to remove that portion of the VOCs in low permeable soil that otherwise would become mobile and migrate.

The SVE emission control systems that will be considered for the Site are a thermal/catalytic oxidizer and vapor phase activated carbon.

5.2 GROUNDWATER REMEDIAL ALTERNATIVE

All ex-situ remedial alternatives require extraction of groundwater, i.e. pump and treat. Pump and treat is a proven technology that could be used for mass removal of chemicals. Pump and treat at the surface is considered the standard groundwater remediation alternative and is known to be expensive and takes years to complete.

A second disadvantage of groundwater extraction is that contaminants remain within the drawdown zone caused by active pumping. Contamination in this zone could continue to be a source of groundwater contamination once pumping has stopped and the water table elevation rises. Additionally, the potential for groundwater extraction to draw and/or accelerate the migration of off-site upgradient contaminants onto the Site must be considered.

The most effective surface treatment technology for the COI in the extracted groundwater is an air stripper. Because surfactants would be present in extracted groundwater, pretreatment to remove these foaming agents prior to primary treatment may be necessary. Chemical laden air discharged from the stripper could be treated using vapor phase activated carbon or combusted in a thermal oxidizer. The most cost-effective approach would be to treat the air stripper emissions using the SVE thermal/catalytic oxidizer. This would require significantly increasing the thermal oxidizer and associated scrubber's capacity. The complexity of pump and treat at the surface at the Site is another disadvantage of ex-situ alternatives. These factors make pump and treat (ex-situ alternatives) a costly and difficult alternative to implement.

In-situ chemical oxidation is a demonstrated alternative to conventional ex-situ (pump and treat) techniques. In-situ chemical oxidation provides the following advantages:

- > can provide rapid and more complete contaminant removal/destruction compared to pump and treat;
- > the contaminants are completely oxidized into carbon dioxide or converted into innocuous compounds commonly found in nature;
- > the chemistry of the process is well known and has been widely used in wastewater treatment applications;
- > the degree of treatment can be regulated and combined with other processes/alternatives;
- > is particularly useful for treatment of source areas to reduce the mass of contaminants;
- > would limit disruptions to on-site operations;
- > can eliminate long-term operation and maintenance costs; and
- > is more cost effective than pump and treat because the time of remediation can be significantly reduced.

Natural attenuation is also a demonstrated alternative to conventional ex-situ (pump and treat) techniques. One of the key factors in assessing the applicability of remediation by natural attenuation is to evaluate the plume status. Based on monitoring groundwater chemical concentrations over time the status of a plume can be classified as either shrinking, stable, or expanding. The plume classifications are defined as follows:

- 1. Shrinking Plume configuration where the solute plume margin is receding back toward the source area over time and the concentrations at points within the plume are decreasing over time.
- 2. Stable Plume configuration where the solute plume margin is stationary over time and concentrations at points within the plume are relatively uniform over time or may decrease over time. A stable plume is evidence of natural attenuation. The source of the COI may persist in soils at the water table, but the natural attenuation rate approximately equals the mass loading rate for COI's to groundwater.
- 3. Expanding Plume configuration where the solute plume margin is continuing to move outward or down gradient from the source area.

Tables 7 through 17 graphically illustrate the total COI concentration for each well at the Site from the period of September 1995 through April 2000. As shown, the total COI concentration at each well has been stable or decreasing, therefore, the plume is classified as a "stable plume or "shrinking plume". Based on the plume evaluation and the individual well COI concentration plot (Tables 7 through 17), it appears that natural attenuation is occurring at the Site to some degree.

Based on the evaluation of remedial alternatives and the above considerations, in-situ chemical oxidation for mass removal near the source followed by Site wide monitored natural attenuation is proposed for groundwater remediation. In-situ chemical oxidation will reduce the mobility, toxicity and volume of the COI within the target area. Semi-annual groundwater monitoring will be implemented to evaluate the natural attenuation processes, plume stability, and document the rate of residual contamination reduction within the groundwater plume.

5.2.1 Chemical Oxidation and Natural Attenuation Considerations

The effects of in-situ chemical oxidation on the natural attenuation process in an aquifer system were considered during evaluation of this remedial alternative. A discussion regarding these potential effects is provided below, and is based on the experience of the specific in-situ chemical oxidation process/vendor (hydrogen peroxide) proposed for use at the Site.

Effects on Existing Microbial Populations

During field application, hydroxyl radicals are formed and travel at high velocities through the saturated soil matrix from an application well. The hydroxyl radicals are strong oxidizers and will oxidize bacterial cell structure if contact is made between the bacteria and the oxidizer, resulting in a decrease, but not elimination, of the bacterial population within the treatment area. Once background conditions are restored (estimated at one to two months following treatment application), bacterial populations can return to the levels present prior to the application of the treatment reagents.

Conversion from Anaerobic to Aerobic State

The majority of the hydrogen peroxide that is applied to the subsurface during the treatment application is converted to hydroxyl radical via a Fenton Reaction pathway. Some volume will decompose to water and oxygen. The additional oxygen added to the aquifer causes a temporary increase in dissolved oxygen levels within the treatment area which in turn would, by definition, make an anaerobic aquifer temporarily more aerobic. This behavior has been monitored during and after field applications by measuring dissolved oxygen (DO) and oxidation-reduction potential (ORP) in monitoring wells located within and just outside the treatment area. Field applications show that DO can rise between 0 and 2% over background levels during the application and returns to background levels within a few days. ORP has been found to become more oxidative than background during the application and, within two weeks, becomes slightly more reductive than background.

Effects of pH and Iron on Biological Activity

The process requires the addition of acetic acid to reduce the pH in water immediately surrounding the application well (5 to 10 feet from the well) so that peroxide will react with the dissolved ferrous iron to produce hydroxyl radical. Depressed pH values dissipate to background within two to ten weeks, depending on the groundwater flow rate. The buffering capacity will not be significantly changed other than a slight increase in buffering due to the addition of iron salts. Based on experience, the additional quantity of iron that is added to the aquifer surrounding the application well is relatively insignificant and does not cause any increase in bacterial levels or cause a decrease in aquifer matrix permeability.

Other Parameters Potentially Affected

Any chemical, organic or inorganic, can be affected, to some degree, if amenable to oxidation. Therefore, during the period of the reagent application, total organic carbon and methane will be oxidized to some degree. Sulfides, chlorides, nitrogen, nitrates, and phosphorus will be relatively unaffected. Some dissolved or suspended metals can be oxidized. The oxidation process generally lasts for just a few hours past application of the hydrogen peroxide and has no long-term effects on natural attenuation other than reducing contaminant concentrations to less toxic levels which may be more amenable for bacterial growth and respiration.

4.0 EVALUATION OF REMEDIAL ALTERNATIVES

This section presents a summary of the evaluation that was conducted to assess the effectiveness, implementability, and cost associated with remedial alternatives. The objective of this evaluation was to assess remedial alternatives and identify an alternative that will be effective in mass removal of COI's at the Site.

Potentially applicable remedial alternatives were selected based on the following parameters:

- > Media to be remediated;
- > Proven to be effective; and
- > Ability to meet the remedial objective, i.e. hot spot mass removal to eliminate a significant adverse effect on groundwater quality.

The remedial alternatives for soil and groundwater that were assessed during this evaluation are described below.

4.1.1 Remedial Alternatives - Soil

The COI's detected in soil at the Site include:

- > Benzene
- > Ethylbenzene
- > Toluene
- > Xylene
- ▶ 1,2 DCA

Remedial alternatives that are known to have been successfully implemented or that have the potential to remediate the COI in soil include the following:

- > In-Situ Remedial Alternatives
 - Soil vapor extraction
 - Subsurface bioventing
 - Chemical oxidation
- > Ex-Situ Remedial Alternatives
 - On-site soil vapor extraction
 - On-site low temperature thermal desorption
 - Off-site land farming
 - Off-site recycling
 - Off-site low temperature thermal desorption
 - Off-site disposal

In-Situ Soil Vapor Extraction

Soil vapor extraction (SVE) involves the use of induced vacuum to strip VOCs from unsaturated soils. System components consist of extraction wells or piping, vacuum pumps, injection or passive inlet wells and a vapor treatment system. During operation, a vacuum is applied, causing a pressure gradient in the surrounding soils and removal of vapors. This induces vapor flow through the unsaturated soil. Contaminants volatilize from the soil matrix into the vapor phase

and are removed through the pore spaces in the soil to the vapor extraction wells or extraction piping. Injection or passive inlet wells may be installed to aid the flow of fresh air through the soil. The vapor from the extraction wells may be treated using an appropriate vapor treatment system.

The SVE process is effective for removing volatile compounds from soils with high permeability, such as sand. Under some conditions, this technology can be used in soils with low permeability, such as clay, with a higher vacuum for a longer period of time.

In-Situ Subsurface Bioventing

In-situ bioventing is a combination of SVE and bioremediation. Bioremediation is a process by which the respiration of indigenous microbial populations is enhanced to degrade compounds in soil under aerobic conditions. Moisture, nutrients (nitrogen and phosphorus), and oxygen are injected into the subsurface to enhance the natural biodegradation process. The in-situ subsurface bioremediation process can also include above ground treatment or conditioning of the water and nutrients to be injected with oxidizers such as hydrogen peroxide. SVE is used to remove VOCs as described previously.

In-Situ Chemical Oxidation

In-situ chemical oxidation utilizes the injection of hydrogen peroxide and a catalyst into soil and the capillary fringe through well points. Within the subsurface, the formation of a hydroxyl free radical via Fenton's reaction chemistry occurs and degrades organic compounds to carbon dioxide and water. The addition of hydrogen peroxide and a catalyst to soil and the capillary fringe usually requires several applications to be effective. This technology can be used in conjunction with SVE systems and mass removal by limiting long-term operation and maintenance programs. The target compounds for chemical oxidation includes VOCs.

Ex-Situ, On-Site Soil Vapor Extraction

As previously described, SVE involves the use of an induced vacuum to strip volatile organic compounds from unsaturated soil. Ex-situ, on-site SVE involves applying an induced vacuum to a polyethylene enveloped soil stockpile to volatilize the VOCs in soil. The basic system components include extraction manifolds and vacuum pumps to remove vapors. The vapors extracted from the soil stockpile may be treated using an appropriate vapor treatment system.

In addition, moisture, nutrients, and oxygen may be injected into the soil stockpile to enhance microbial activity within the soil. Additions to the basic SVE system would include injection piping or manifolds to supply moisture, nutrients, and oxygen, i.e. bioventing.

Ex-Situ, On-Site Low Temperature Thermal Desorption

Excavated soil can be treated using on-site low temperature thermal desorption (LTTD) which is a process where excavated contaminated soil is heated to volatilize water and chemical compounds having boiling points of less than 800 °F. Typically, a continuous feed system (e.g. rotary kiln) with direct or indirect fire is used. Direct fire uses a flame in the air space and indirect fire utilizes conduits to heat the soil. Volatilized chemicals in the vapor exhaust stream can be recondensed for recycling, reuse, or disposal or destroyed using an afterburner.

LTTD is effective for removing volatile compounds from soil with high permeability. Under some conditions, this technology can be used in soils with low permeability, such as clay, although these soils may require longer treatment periods.

Off-Site Land Farming

Excavated soil would be transported to an off-site treatment facility for land farming, which is a process by which the respiration of indigenous microbial populations is enhanced to degrade VOCs in soil under aerobic conditions. Soil is placed in treatment cells in lifts of a specified depth. Moisture and nutrients are applied to the soil surface. The soil is then tilled to mix the moisture and nutrients and aerate the soil to add oxygen.

Off-Site Recycling

Petroleum hydrocarbon-impacted soil can be excavated and transported to an appropriate recycling facility that performs the asphalt mixing process. The asphalt mixing process involves using the petroleum-impacted soil as a raw material for the production of asphalt road base. The process of producing cold mix asphalt involves blending the petroleum hydrocarbon-impacted soil with emulsified asphalt to produce a commercial grade product.

Off-Site Low temperature Thermal Desorption

Excavated soils would be transported to an off-site facility that uses on-site LTTD as a remediation method. The LTTD process that would be used at the off-site facility is the same as the process described under ex-situ, on-site LTTD process.

Off-Site Disposal

Off-site disposal involves excavating the impacted soil from the site and transporting it to an appropriate facility for disposal. Soil containing chemical constituents with concentrations greater than the applicable regulatory limits for hazardous waste would be disposed of at a permitted Class I or Class II hazardous waste facility. In addition, prior to landfilling, soil containing certain chemicals may require additional treatment to meet Land Ban Treatment Standards. Soil containing chemical constituents at concentrations less than these regulatory limits would be disposed at other appropriate off-site facilities.

4.1.2 Remedial Alternatives - Groundwater

The COI's detected in groundwater at the Site include:

- Benzene
- > Ethylbenzene
- > Toluene
- > Xylene
- > 1,2 DCA

Other chemicals found in groundwater at the Site excluded from the COI (see Section 2.3.1) include:

- > Surfactants;
- > 1,1 DCA;
- ➤ 1,1 DCE;
- ➤ PCE;
- > Carbon Tetrachloride;
- > Chloroform; and
- > TCE

The presence of these chemicals may impact the treatment process and/or discharge of groundwater. Therefore, groundwater remedial alternatives must consider all chemicals detected in groundwater at the Site.

Remedial alternatives that are known to have been successfully implemented or that have the potential to remediate the COI's and other contaminants in groundwater include the following:

- > In-Situ Remedial Alternatives
 - Air Sparging
 - Chemical Oxidation
 - Monitored Natural Attenuation
- > Ex-Situ Remedial Alternatives
 - Dual Phase Extraction
 - Groundwater Extraction With Liquid-Phase Carbon Adsorption Treatment
 - Groundwater Extraction With Air Stripping
 - Groundwater Extraction With Ultraviolet (UV) Oxidation Treatment

In-Situ Air Sparging

The air sparging process uses clean air injected under pressure through sparge points (wells) below the groundwater surface. Resulting air bubbles migrate laterally and vertically through the contaminated groundwater. Volatile compounds in the saturated zone and capillary fringe that are exposed to this injected air volatilize from the aqueous phase into the vapor phase and migrate upward to the unsaturated zone, where the volatilized organic compounds are then captured using a SVE system. The injected air will also increase the oxygen content of the groundwater and subsurface soil, which would facilitate increased microbiological activity therefore promoting insitu biodegradation. The vapor collected by the SVE system would be treated using an appropriate vapor treatment system.

Air sparging is effective for concentrated volatile compounds at the surface of the water table, also known as a smear zone. This remedial alternative is also best suited for permeable saturated soils. The target compounds for air sparging include VOCs.

In-Situ Chemical Oxidation

In-situ chemical oxidation is a more aggressive remediation alternative than in-situ air sparging or "pump and treat" and can result in faster cleanup. In-situ chemical oxidation is based on the delivery of chemical oxidants to contaminated groundwater so that the contaminants are either completely oxidized into carbon dioxide or converted into innocuous compounds commonly found in nature. The oxidants applied in this process are typically hydrogen peroxide (H₂O₂), potassium permanganate (KmnO₄), or ozone. The most common applications thus far have been

based on Fenton's Reagent whereby hydrogen peroxide is applied with an iron catalyst creating a hydroxyl free radical. Residual hydrogen peroxide decomposes into water and oxygen in the subsurface and any remaining iron precipitates out. Typically, several treatment applications are needed. The volume and chemical composition of treatment applications are based on the contaminant levels, aquifer characteristics, and pre-application benchscale test results. The oxidant can be injected through a well or injector head directly into the subsurface, mixed with a catalyst and injected, or combined with an extract from the site and then injected and recirculated.

The target compounds for in-situ chemical oxidation include chlorinated solvents, polyaromatic hydrocarbons, and petroleum products.

Monitored Natural Attenuation

Monitored natural attenuation is a remedial approach that takes advantage of natural physical, chemical, or biological degradation processes while managing residual risk COI's above regulatory action levels. As part of a monitored attenuation approach, a groundwater monitoring program is implemented to:

- Assure that human health and/or ecological risks continue to be managed at the potential exposure pathways,
- > document that the groundwater plume is shrinking or is stable over time, and
- > document the rate of mass reduction within the groundwater plume.

Natural attenuation is a reduction in mass or concentration of a compound in groundwater over time or distance from the source of chemicals of concern due to naturally occurring physical, chemical, and biological processes, such as biodegradation, dispersion, dilution, sorption, and volatilization.

Natural attenuation makes use of natural processes to contain or slow the spread of contamination and reduce the concentration of contaminants. The processes contributing to natural attenuation are typically occurring at all contaminant sites, but at varying rates and degrees of effectiveness.

Ex-Situ Dual Phase Extraction

The dual phase extraction process uses a high vacuum system to simultaneously remove liquid and vapor from the saturated zone and capillary fringe. The screen of the vacuum extraction well is installed within the impacted unsaturated zone and below the water table surface. By applying the vacuum to the extraction well, the volatile chemical constituents in the unsaturated soil are volatilized and extracted. In addition, the impacted groundwater becomes entrained in the extracted vapor stream and is removed. A stinger and submersible pumps are often utilized to aid in groundwater recovery. The extracted vapor and groundwater are separated in an aboveground system and treated. An appropriate control technology for extracted vapors would include activated carbon or a thermal oxidizer. Extracted groundwater would be treated using activated carbon, air stripping, or UV oxidation.

Dual phase extraction is effective when used at sites that have a low yielding aquifer. The target chemicals for dual phase extraction include VOCs.

Groundwater Extraction with Liquid-Phase Carbon Adsorption Treatment

Groundwater is extracted from the subsurface using an extraction well network located within the impacted area. The groundwater that is extracted is then pumped through a series of vessels containing activated carbon. Dissolved organic compounds are adsorbed onto the activated carbon and removed from the extracted groundwater stream.

The activated carbon used to treat the groundwater requires periodic replacement or regeneration to be effective. The target chemicals for a groundwater treatment system that uses activated carbon includes VOCs.

Groundwater Extraction with Air Stripping

Groundwater is extracted from the subsurface using an extraction well network located within the impacted area. The groundwater that is extracted is then pumped through a stripping unit where groundwater flows over packed column to increase its surface area while being aerated by ambient air. Aeration methods that have been successfully used include packed towers, low-profile shallow tray aeration, diffused aeration, and spray aeration. The air stream exiting the air stripper unit will contain volatilized chemical compounds. Depending on the concentration of the chemicals in the air stream, an emission control technology may be required. Common control technologies include activated carbon and thermal oxidizers. Air stripping is used to remove VOCs from the groundwater.

Groundwater Extraction with UV Oxidation

Groundwater is extracted from the subsurface using an extraction well network located within the impacted area. The groundwater that is extracted is then pumped through a UV oxidation treatment system. UV oxidation is an advanced oxidation process that uses UV light in conjunction with ozone or hydrogen peroxide to enhance the oxidation of organic compounds in the extracted groundwater. The target chemicals for a groundwater treatment system that uses UV oxidation include VOCs.

4.2 DESCRIPTION OF ENGINEERING EVALUATION CRITERIA

During the evaluation process, the remedial alternatives were assessed with respect to effectiveness, implementability, and cost. A description of the engineering evaluation criteria and the basis for assessing each remedial alternative is presented below.

Effectiveness

The effectiveness of each remedial alternative was evaluated based on the following criteria:

- > Performance and reliability in handling/treating the chemical constituents and physical conditions as related to the Site;
- > Impact on human health and the environment during alternative construction and implementation. The processes were evaluated to assess potential short-term and long-term impacts to on-site and off-site human receptors and the environment. Short-term impacts refer to impacts that may occur during the construction and remediation implementation period, and long-term impacts refer to impacts that may occur after the remediation has been completed; and

Ability to meet the remedial objective, i.e. mass removal to eliminate a significant adverse effect on groundwater quality.

Implementability

The implementability of each remedial alternative was evaluated based on the following criteria:

- > Physical implementability, which is a measure of each remedial alternative with respect to space limitations, equipment availability, utility requirements, and the effort to mobilize, operate, maintain, monitor, and demobilize the proposed remediation process; and
- > Institutional implementability, which is a measure of each remedial alternative with respect to applicable federal, state of California, and local regulations and permitting requirements.

Cost

The cost of each remedial alternative was assessed based on the fixed or capital cost for construction and ongoing operation and maintenance (O&M) costs. Each remedial alternative was compared to each other and evaluated as having a relative high, medium, or low cost.

The capital cost for construction includes remedial alternative design, engineering and pilot testing, and procurement and installation of equipment. The operation and maintenance costs are those annual costs necessary to operate and maintain the remedial alternative.

4.2.1 Engineering Evaluation Results

Based on the previously described evaluation criteria, each remedial alternative was assessed to measure its capability with respect to mitigating the COI in soil and groundwater and the costs associated with implementing each remedial alternative. A summary of the capability of each remedial alternative to achieve the goal of hot spot mass removal under the physical conditions that exist at the Site is presented in Subsection 4.2.2 - Effectiveness and Implementability. A discussion of the costs associated with implementing each remedial alternative is presented in Subsection 4.2.3 - Cost.

4.2.2 Effectiveness and Implementability

The remedial alternatives for soil and groundwater were evaluated according to the criteria for effectiveness and implementability. A summary of the evaluation results for effectiveness and implementability are presented as Tables 5 and 6.

4.2.3 Cost

The relative cost evaluation for the soil remedial alternatives is:

Remedial Alternative	Capital Cost	Annual O&M Cost	Capital and O&M Cost
In-Situ SVE	Low	Low	Low
In-Situ Bioventing	Medium	Medium	Medium
Ex-Situ On-Site SVE	High	Medium	High
Ex-Situ On-Site LTTD	High	Low	High
Off-Site Landfarming	High	Low	High
Off-Site Recycling	High	Low	High
Off-Site LTTD	High	Low	High
Off-Site Disposal	High	Low	High

The relative cost evaluation for the groundwater remedial alternatives is:

Remedial Alternative	Capital Cost	Annual O&M Cost	Capital and O&M Cost
Air Sparging	Medium	Medium	Medium
Chemical Oxidation	Medium	Low	Low
Natural Attenuation	Low	Low	Low
Dual Phase Extraction	Medium	Medium	Medium
Groundwater	High	High	High
Extraction with			-
Liquid-Phase Carbon			
Adsorption			
Groundwater	High	Medium	Medium
Extraction with Air			
Stripping			
Groundwater	High	High	High
extraction with UV			
Oxidation			

6.0 REMEDIAL ALTERNATIVE IMPLEMENTATION

Implementation of the proposed soil and groundwater remedial alternative is described in the following sections.

6.1 SOIL REMEDIATION

6.1.1 SVE Pilot Test

An SVE pilot test will be performed to verify/develop system design criteria. The objectives of the SVE pilot test will be to (1) determine the effective radius of influence an optimum extraction rates for the upper and lower target soil units; (2) select the appropriate blower/vacuum pump size for the SVE system; and (3) develop treatment design criteria.

The air permeability of the upper and lower soil units will be evaluated by performing two separate tests. Table 18 presents the proposed extraction and observation wells for each test and the screened interval of the extraction and observation wells. During each test vacuum measurements will be made in at least two observation wells within each soil unit.

A high vacuum blower with a maximum capability of approximately 20 to 25 inches of mercury will be used to perform the pilot tests. Each test will be conducted for approximately two to four hours. Vacuum will be measured at the well and in observation wells located within the soil unit being tested. Vacuum measurements will be made at approximately one-minute intervals for the first 10 minutes and at approximately 10-minute intervals thereafter, using a differential pressure gauge. Total flow and temperature at the extraction well will be monitored at approximately 10-minute intervals.

Vapor samples will be collected from the extraction wells in Tedlar bags at the beginning of the test, after extraction for one hour, and immediately before the end of the test. Concentrations of total VOCs will also be measured at these times in the extracted soil vapor using a PID and/or FID organic vapor meter. Tedlar bag samples will be sent to a certified laboratory under chain-of-custody documentation for analysis of halogenated and aromatic compounds using EPA Methods 8010/8020. This information will be used to evaluate and estimate the total mass of contaminants to be removed so that a cost effective vapor control system can be selected (thermal/catalytic oxidizer or vapor phase carbon).

SVE System Design

At the completion of the SVE pilot tests, the data will be analyzed and the radius of influence calculated for each soil unit using the computer program Hyperventilate (EPA, 1992) or other similar method. The design of the SVE system described below would be reviewed and changes made, as appropriate.

6.1.2 SVE Implementation Plan

The proposed SVE system has been developed based on the following assumptions:

- > The radius of influence for the upper permeable soil will be a minimum of 30 feet.
- > The radius of influence for the silty clay and clay unit will be approximately 15 feet.
- > The silty sand, sand, and silty clay from approximately ground surface to 35 to 40 feet bgs can be managed as one unit for the purpose of vapor extraction.
- > The clayey unit and silty clay unit from approximately 35 to 40 feet bgs to 55 feet bgs can be managed as a separate unit for purposes of vapor extraction.
- > Pilot testing will be conducted to determine the actual radius of influence and flow rates within the two units.

The proposed SVE system will consist of extraction wells, a high vacuum blower, a knockout pot, and a thermal/catalytic oxidizer or vapor phase carbon.

A total of 5 vapor extraction wells are anticipated for the upper soil unit. The preliminary locations for these extraction wells and the anticipated radius of influence are shown on Figure 14.

A total of 14 extraction wells are anticipated for the lower soil unit. The preliminary locations for these wells and the anticipated radius of influence are shown on Figure 15. <u>Health and Safety and Permitting</u>

A site-specific health and safety plan (HASP) will be prepared in accordance with the relevant provisions of Title 8, Section 5192 of the California Health and Safety Code and Title 40, Section 1910.120 of the Federal Code of Regulations. This health and safety plan will incorporate all fieldwork activities.

Regulatory permits or approvals that will be required for the SVE system include:

- > Approval of this RAP by the LARWOCB;
- > A permit to construct and operate from the South Coast Air Quality Management District (SCAQMD);
- > Well installation permits from the Los Angeles County Department of Health Services; and
- An electrical permit from the City of Santa Fe Springs.

SVE Well Installation

Five SVE wells will be installed in the upper soil unit and 14 wells will be installed in the lower soil unit. SVE wells will be installed using a hollow stem auger. The wells will be constructed with 2-inch diameter Schedule 40 PVC casing and screened with 0.020-inch slots. A sand pack consisting of #2/12 sand will be placed in the annulus of the well to a height of approximately 2 feet above the screen. An annular plug consisting of approximately 2 feet of hydrated bentonite pellets will be placed above the sand pack.

A lithologic log will be prepared for each boring describing the soil type, color, moisture, and other pertinent information.

Continuous coring starting at 30 feet bgs will be conducted to identify the lower silty clay/clayey unit above the groundwater table. Soil samples will be screened in the field by taking headspace measurements using a PID or FID. The soil samples will be placed in a Ziploc bag and allowed to set for 10 minutes. The headspace reading will then be taken by inserting the PID or FID probe in to the air space within the bag. The highest reading at each depth interval will be recorded.

Soil samples from one VES well boring, installed in the area of highest contamination, will be selected for analysis of MTBE using EPA Method 8020. The purpose of this soil sampling is to provide the RWQCB with necessary information required for future site closure. Soil samples will be collected in brass or stainless steel liners, sealed, labeled, and placed in an ice chest for transportation under chain-of-custody to a certified laboratory.

All sampling and drilling equipment will be decontaminated by steam cleaning and/or washing with tap water, a laboratory grade detergent/water solution, a tap rinse, and a final distilled water rinse prior to use at each drilling or sampling location.

Soil cuttings and equipment decontamination water will be placed in DOT-approved, 55-gallon drums. The drums will be labeled, covered and sealed. The drums will be temporarily stored in a secure area at the Site, pending disposal in accordance with the applicable regulations.

SVE System

Soil vapors will be extracted from the soil using a high vacuum blower. The system, including the blower, knockout pot, thermal oxidizer or activated carbon, and controls will be skid mounted and secured to the concrete pad south of the former USTs. This area will be fenced to prevent unwanted access to the treatment system.

Piping from each well will be brought to a 4-inch diameter manifold within the fenced enclosure. It is assumed that all piping will be secured aboveground. Flow from individual wells will be controlled to allow for system optimization, such as restricting flow from one unit or individual wells to manage remediation. Sample ports will be installed for each well, influent to the oxidizer, and from the oxidizer effluent air stream.

SVE Monitoring

SVE monitoring will consist of (1) monitoring required to comply with the SCAQMD permit to operate, and (2) monitoring to evaluate remediation progress.

SCAQMD permit monitoring will involve the collection of influent and effluent samples on a weekly to monthly basis. These samples will be collected in a Tedlar bag and VOC measurements taken using a PID or FID. VOC measurements will be recorded on a log, kept at the Site, and evaluated for compliance with operating permit conditions. Total flow and temperature measurements will be monitored continuously and recorded on chart paper, which will be stored at the Site to comply with permit conditions.

Remediation progress monitoring will involve the following:

During system startup, initial VOC concentrations will be collected from each extraction well and the 4-inch diameter header (influent to treatment system). These samples will be collected in Tedlar bags and sent to a certified laboratory under chain-of-custody for analysis of halogenated and aromatic compounds using EPA Methods 8010/8020. PID/FID measurements will also be recorder at each well and the header. VOC measurements will be collected periodically and measured using a PID/FID throughout the startup period. Once the total VOC influent concentration stabilizes, a Tedlar bag sample will be collected for laboratory analysis to establish baseline conditions.

- Weekly monitoring will be conducted during full-scale operation. PID measurements will be made from individual wells and at the header to record VOC concentrations. Monthly Tedlar bag samples will be collected and analyzed by the laboratory for halogenated and aromatic compounds using EPA Methods 8010/8020. This information will be documented and used to evaluate remediation progress on a monthly basis. This will consist of evaluating the following operating data:
 - Date and time of measurements;
 - Extraction flow rate;
 - Influent total VOC concentration (measured using a PID);
 - Volume removal rate;
 - Estimated mass removed; and
 - Estimated cumulative mass removed.
- 3. The SVE system is expected to operate until a decline in VOC concentrations over time in extracted soil vapor reaches asymptotic levels. Continued SVE operation will be evaluated by measuring the VOC "rebound concentration" of the influent vapor stream (LARWQCB, 1996). Rebound concentration monitoring will begin when no decrease in the influent vapor concentration is observed. When no decrease in the VOC concentration occurs the system will be shut down for several weeks and the soil vapors in the vadose zone will be allowed to equilibrate. Prior to the system shutdown, a Tedlar bag sample will be collected from the influent vapor stream and analyzed by the laboratory for halogenated and aromatic compounds using EPA Methods 8010/8020. After the shutdown period, the system will be restarted and a Tedlar bag sample will be collected and analyzed to evaluate rebound over time. The shutdown and restart process will continue until the decline of the influent VOC concentration reaches an asymptotic level. At this point an evaluation will be performed to determine the extent of VOC removal from the soil units and the benefit of further pulsing the extraction system.

Closure Sampling

Soil sampling will be conducted to verify that a reduction in VOC mass has occurred in the vadose zone. Soil borings will be drilled at selected locations and samples collected at various depths in both the upper and lower soil units. A proposed closure-sampling plan will be submitted for LARWQCB approval prior to implementation of closure sampling. The sampling plan will identify sample locations, sampling protocols, analytical procedures, and field procedures.

6.1.3 Reporting

A remedial action implementation report will be prepared and submitted to the LARWQCB. The report will contain tables and figures as necessary. The anticipated information to be tabulated include:

- > Soil sample analytical data from extraction well installation;
- > Vapor sample data from the SVE pilot test;
- > SVE pilot test results;
- > SVE extraction well construction details and boring logs; and
- > A description of the SVE system final design and installation.

The anticipated figures include a Site location map and Site maps showing the boring/well locations, SVE conveyance piping and treatment system, and vacuum monitoring data from the pilot test.

Periodic remediation monitoring reports will be prepared and submitted to the LARWQCB. The following information will be included in these reports:

- > Date and time of vapor measurements;
- > Extraction flow rate:
- > Influent total VOC concentration (measured using a PID and laboratory analysis);
- > Volume removal rate;
- > Estimated mass removed; and
- > Estimated cumulative mass removed.

6.2 GROUNDWATER REMEDIATION

Pacific Edge has reviewed site-specific information with a vendor specializing in in-situ chemical oxidation that has successfully applied this technology at numerous private and public sector sites. This review indicated that in-situ chemical oxidation is an appropriate technology for mass reduction of COI in groundwater at the Site.

6.2.1 In-Situ Chemical Oxidation Bench-Scale Test

An in-situ chemical oxidation bench-scale test will be conducted on groundwater and saturated soil from the Site. The bench-scale test objectives are to:

- > Verify that the oxidative process is effective under site-specific conditions.
- > Verify that the oxidative process is capable of achieving significant contaminant destruction.
- > Determine the optimal chemical application mix.

Impacted groundwater collected from MW-1, MW-2, and MW-10 will be used for the bench-scale test. Approximately 3 liters of groundwater will be collected for the test. Approximately 13 pounds of impacted saturated soil is required for the test. Impacted saturated soil cuttings will be collected during the installation of the lower zone wells installed for the SVE pilot test.

Reaction vessels will be used during the bench-scale test. For each reaction vessel, adequate soil and groundwater will be added leaving enough headspace for pre-determined reagent volumes to be injected. Initial VOC concentrations will be determined for saturated soil and groundwater. In addition, saturated soils will be analyzed for iron, manganese, and total organic carbon.

The bench-scale test will be performed by injecting a series of catalyst and oxidizer amendments into the reaction vessels. Parallel monitoring vessels will receive same doses as the corresponding main reaction vessels. Samples will be periodically withdrawn from the monitoring vessels for hydrogen peroxide analysis. One of the reaction vessels will initially be isolated for control purposes and will receive an equivalent volume of distilled water to compensate for reagent volumes injected into treatment vessels. Following the last treatment, all reaction vessels will remain undisturbed until the oxidizer is completely consumed. Saturated soil and groundwater from each vessel will be analyzed for residual VOC concentrations.

At the completion of the bench-scale test the data will be analyzed and the optimal mix for mass reduction will be determined. A bench-scale report will be prepared and submitted to the LARWQCB for review. This report will describe the bench-scale results and present the optimal mix design proposed for application at the Site.

6.2.2 In-situ Chemical Oxidation Pilot Test

Upon completion of the bench-scale test a detailed workplan will be prepared for an in-situ chemical oxidation pilot test. This workplan will be submitted to the RWQCB for review and approval. The objectives of the pilot test is to:

- > Determine the infiltration rate;
- Determine proper application well spacing for full scale treatment;
- > Determine contaminant concentrations after treatment; and
- > Evaluate hydraulic and vapor control methods.

It is our understanding that the RWQCB now requires hydraulic and vapor control during groundwater treatment using hydrogen peroxide. To provide vapor control, the pilot test will be conducted during operation of the soil vapor extraction system. Two hydraulic control methods will be evaluated during the pilot test. These two methods are:

- > Groundwater extraction using a down well pump; and
- > Groundwater extraction using a stinger.

Regulatory permits or approvals that will be required for the pilot test include:

- Approval of this RAP and the pilot test workplan by the LARWQCB;
- > CEQA reporting and determination or waiver; and
- > Well installation permits from the Los Angeles County Department of Health Services.

The implementation of full scale in-situ chemical oxidation described below would be reviewed upon completion of the pilot test. Recommendations for full scale treatment and hydraulic and vapor control will be provided in a pilot test report.

6.2.3 Full Scale In-Situ Chemical Oxidation and Natural Attenuation Implementation

The in-situ chemical oxidation and natural attenuation groundwater remedial alternative has been developed based on the following assumptions:

- > In-situ chemical oxidation will be used to reduce the mass of COI within the approximate area shown on Figure 13. This area is in the central portion of the groundwater target area where the highest COI concentrations are located.
- Approximately 16 to twenty 2-inch diameter wells will be installed within the area shown on Figure 13 and used for the application of chemical oxidation treatments.
- > Three application treatments will be required to significantly reduce the mass of contaminants within the target area.
- > Natural attenuation and plume stability of the COI will be monitored by continued implementation of the semi-annual groundwater monitoring and sampling program.

Health and Safety and Permitting

The site-specific health and safety plan (HASP) will incorporate all fieldwork activities associated with in-situ chemical oxidation treatment and include measures for safe handling of all chemicals.

Regulatory permits or approvals that will be required for the in-situ chemical oxidation and monitored natural attenuation include:

- > Approval of this RAP by the LARWOCB;
- > CEQA reporting and determination or waiver; and
- > Well installation permits from the Los Angeles County Department of Health Services.

Application Well Installation

Based on the review of site data, a conservative well spacing of 625 square feet per well will be used for treatment. Therefore, approximately 16 application wells will be installed to a total depth of 75 feet bgs. The application wells will be installed using a hollow stem auger. The wells will be constructed with 2-inch diameter stainless steel and screened with 0.020-inch slots from first approximately 5 feet above groundwater to a depth of 75 feet bgs. A sand pack consisting of #2/12 sand will be placed in the annulus of the well to a height of approximately 2 feet above the screen. An annular plug consisting of approximately 2 feet of hydrated bentonite pellets will be placed above the sand pack.

All sampling and drilling equipment will be decontaminated by steam cleaning and/or washing with tap water, a laboratory grade detergent/water solution, a tap rinse, and a final distilled water rinse prior to use at each drilling or sampling location.

Soil cuttings and equipment decontamination water will be placed in DOT-approved, 55-gallon drums. The drums will be labeled, covered and sealed. The drums will be temporarily stored in a secure area at the Site, pending disposal in accordance with the applicable regulations.

In-Situ Chemical Oxidation Treatment

It is anticipated that three treatment applications will be required to significantly reduce the mass of COI within the treatment area. The chemical treatment mix determined by bench and pilot testing will be applied through the 16 application wells.

Existing wells MW-1, MW-2, MW-10, and three to six application wells will be designated as the wells to be sampled to monitor the treatment application process. Prior to the initial treatment application, groundwater samples will be collected from the designated wells to provide a baseline for treatment monitoring. Treatment monitoring will include measuring pH, temperature, and dissolved oxygen. In addition, groundwater samples will be shipped under chain-of-custody to a certified laboratory and analyzed for halogenated and aromatic compounds using EPA Method 8010/8020.

During the initial application, pH, temperature, and dissolved oxygen will be measured in groundwater samples collected from the designated wells to monitor the treatment process. The second treatment application will occur 2 to 4 weeks after the completion of the initial treatment.

The second treatment process will again be monitored by measuring pH, temperature, and dissolved oxygen at the designated wells.

Following a period of 4 to 6 weeks after the second treatment application, groundwater samples will be collected and analyzed by the laboratory for halogenated and aromatic compounds using EPA Methods 8010/8020. Based on the analytical results, a third application may be required at all or select wells. The third treatment application would again be monitored by measuring pH, temperature, and dissolved oxygen in groundwater collected from the designated wells.

Within 2 to 4 weeks after the completion of the final treatment application all monitoring wells (MW-1 through MW-11) will be sampled and analyzed by the laboratory for halogenated and aromatic compounds using EPA Methods 8010/8020. This sampling event will serve as a baseline for monitored natural attenuation of groundwater at the Site.

All groundwater sampling will be conducted in accordance with the procedures and protocols currently being implemented by Pacific Edge during semi-annual groundwater monitoring at the Site.

6.2.4 In-Situ Chemical Oxidation Reporting

Following treatment applications a report will be prepared and submitted to the LARWQCB. This report will include:

- > Baseline contaminant concentrations in designated wells prior to treatment;
- > A description of treatment application activities;
- Monitoring data obtained during each treatment application;
- > Volume and rate of treatment application mix applied during each treatment;
- > Location and number of application wells;
- > Contaminant concentrations at the completion of in-situ chemical oxidation; and
- > Estimated cumulative mass removed.

6.2.5 Monitored Natural Attenuation

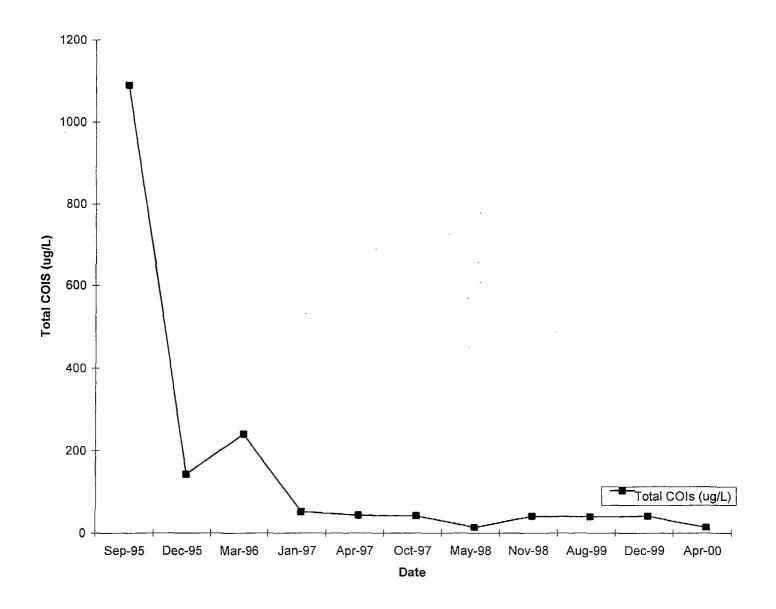
Continuation of the semi-annual groundwater monitoring program will be used to evaluate the natural attenuation processes for BTEX, plume stability for chlorinated compounds, and document the rate of residual contamination reduction within the groundwater plume. The semi-annual sampling events will consist of sampling and monitoring eleven wells (MW-1 through MW-11) at the Site. Groundwater samples will be analyzed for the following compounds:

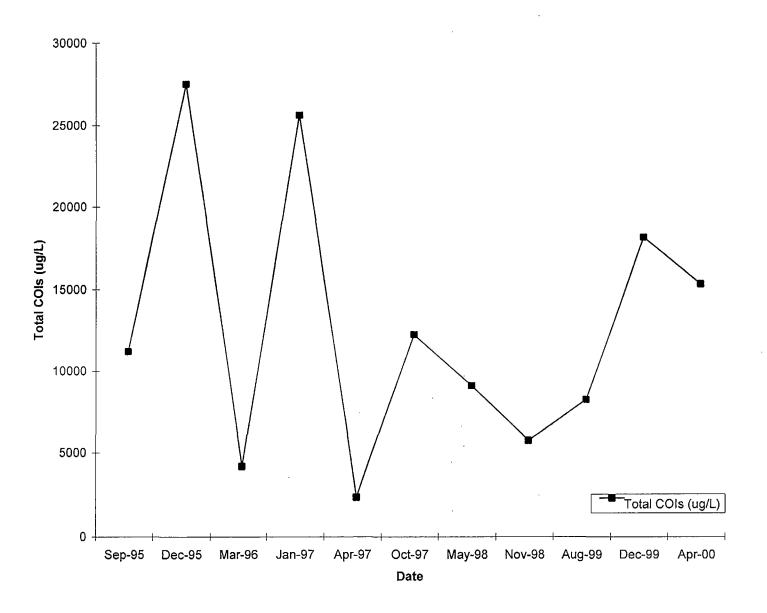
- > Halogenated volatile organic compounds using EPA Method 8010
- Aromatic compounds using EPA Method 8020
- ➤ Surfactants MBAS using EPA Method 425.1
- > pH using EPA Method 150.1
- Total Petroleum Hydrocarbons diesel range (TPHd) by DHS LUFT Method.

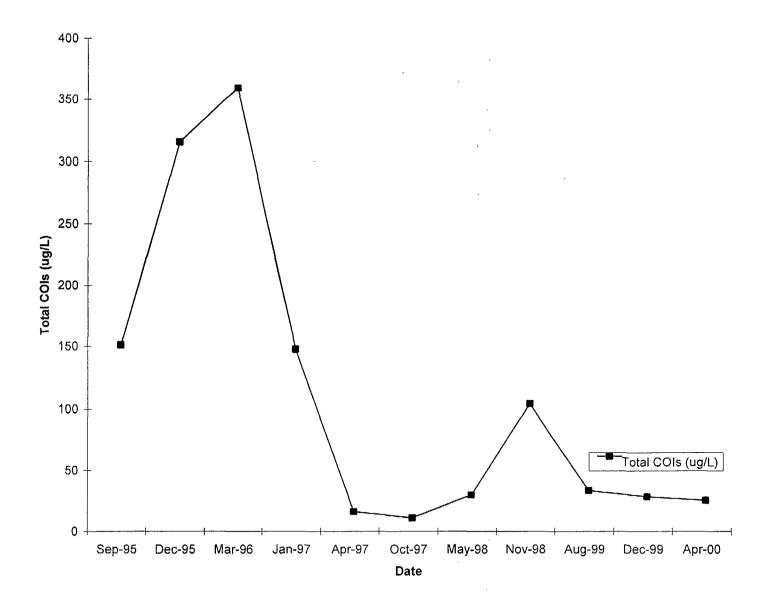
Groundwater sampling events will occur in April and October. Reports documenting sampling activities and analytical results will also include:

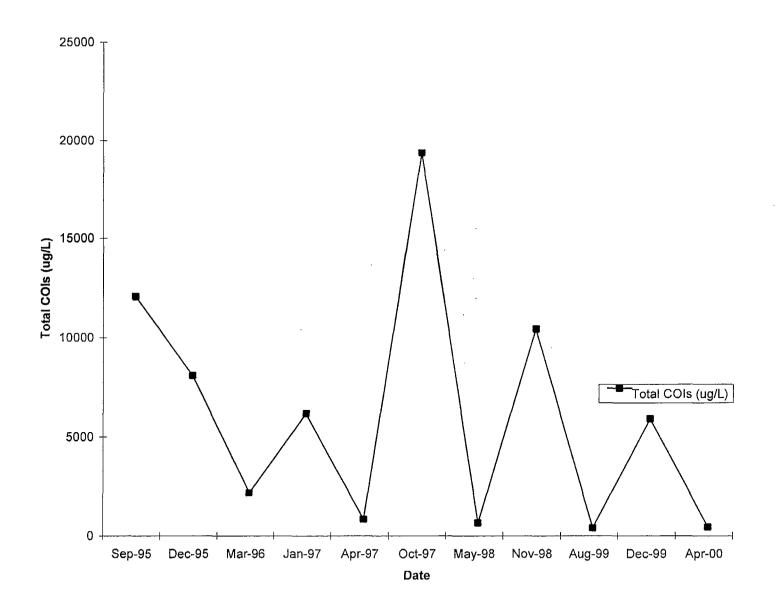
> A figure illustrating the groundwater flow direction;

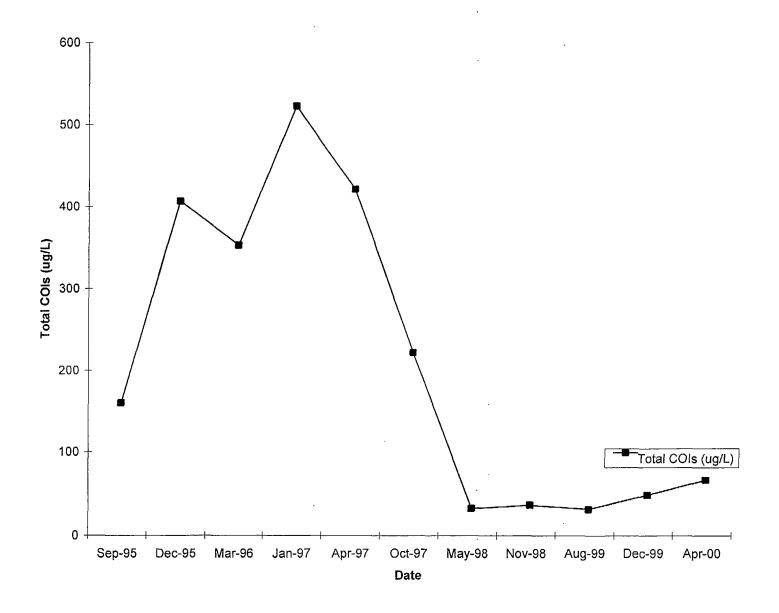
- Figures illustrating the COI plume, and
 A discussion regarding plume stability and observed trends associated with the natural attenuation process.

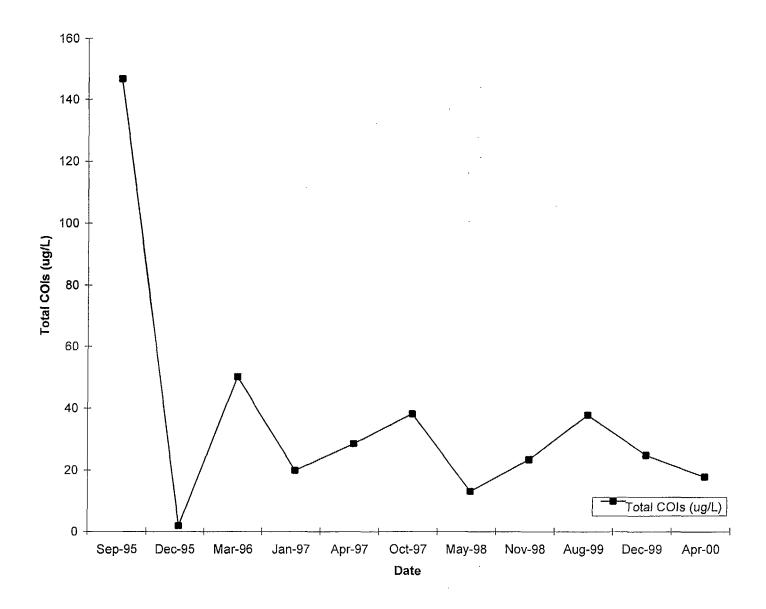

7.0 SCHEDULE

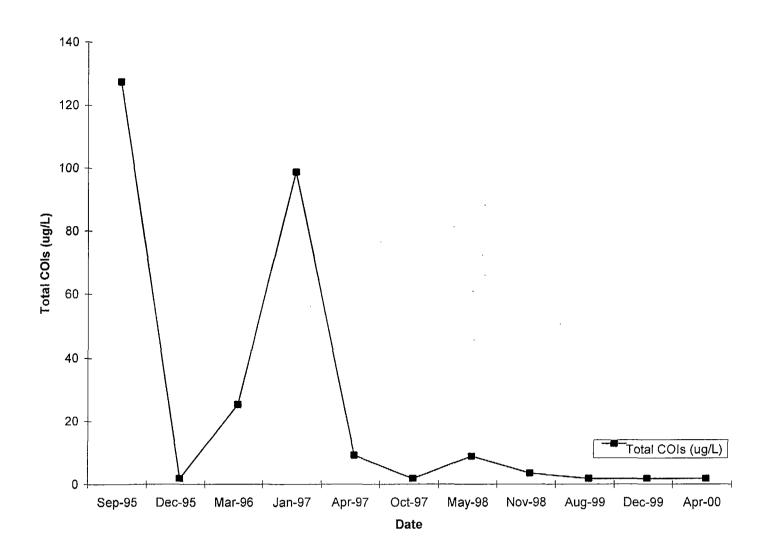

7.1 SOIL REMEDIATION

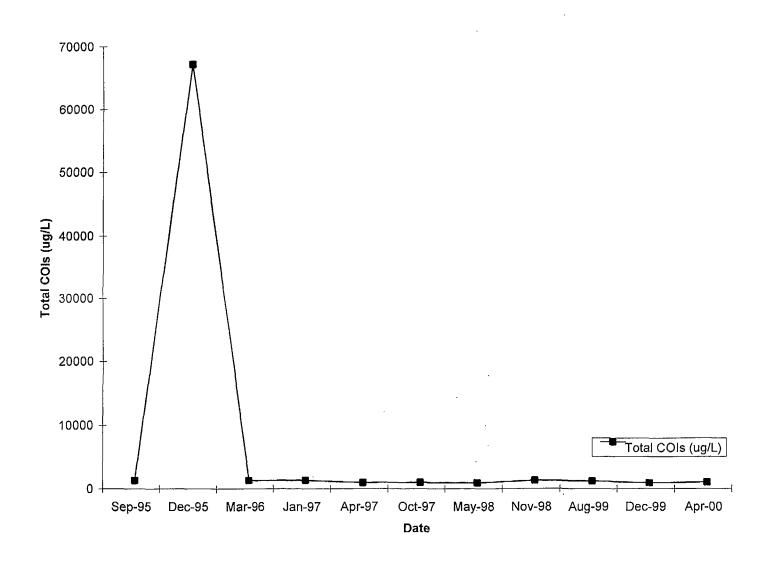

It is anticipated that work on the SVE pilot will begin approximately four weeks after approval of this revised RAP. Several months will be required prior to implementation of the full scale SVE system to allow for system procurement and permitting. Installation and startup of the full scale SVE system can be accomplished within one to two months following equipment procurement and obtaining permits.

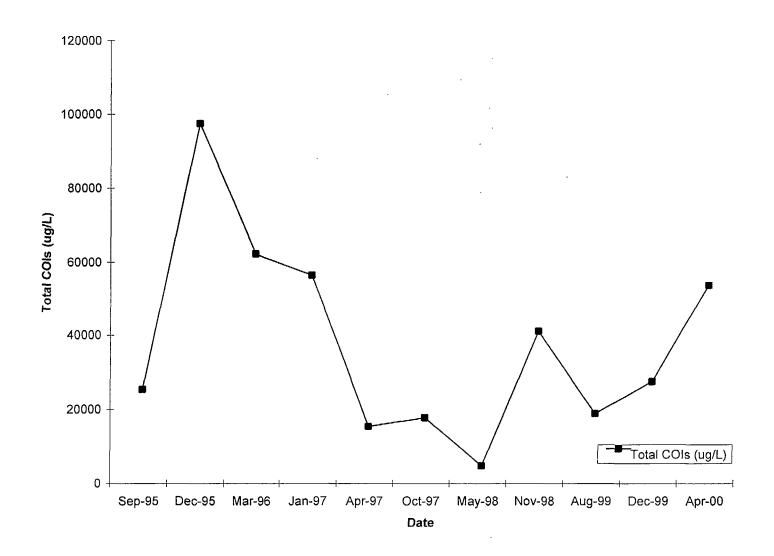

7.2 GROUNDWATER REMEDIATION


Groundwater and saturated soil samples will be collected during the SVE pilot study. These samples will be used for the in-situ chemical oxidation bench-scale study. At the completion of bench scale study (2 to 3 weeks) the CEQA reporting process for the oxidation pilot test and full-scale implementation will be undertaken. It is anticipated that 3 to 6 months will be required for a CEQA negative declaration determination. The oxidation pilot test will follow obtainment of necessary permits and approvals. It is estimated that approximately 2 months will be required for the pilot test and evaluation of the results. Full-scale treatment is anticipated to require three to four months from the installation of application wells through three treatment applications.









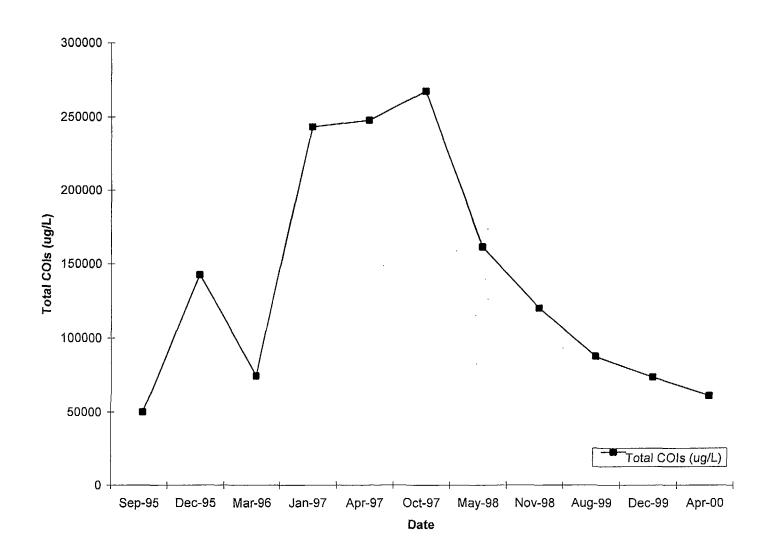
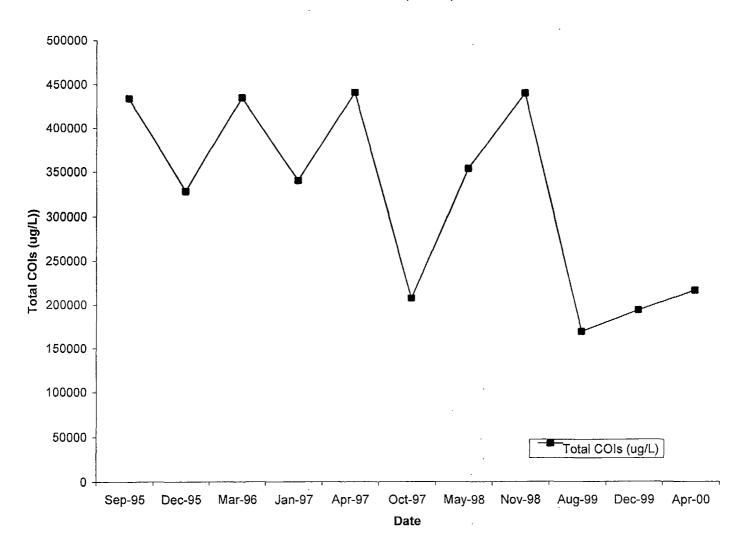



Table 7 (MW-1)

Evaluation Summary Remedial Alternatives for Groundwater

Remedial Alternative	Effectiveness	Implementability
In-Situ Remedial Alternatives Air Sparging	Limited effectiveness due to clay confining layer. Volatilized VOCs & BTEX in groundwater will be prohibited from migration up through clay layer where SVE wells can collect them for treatment. Requires using appropriate SVE treatment	Equipment and materials that are necessary to implement this remedial alternative are readily available. A permit to construct and operate from the SCAQMD for the SVE system will be required.
Chemical Oxidation	system. Effective for treatment of VOCs & BTEX. When combined with other groundwater remedial allematives, such as, natural attenuation, is effective at reducing long term operation of pump and treat system. Can target capillary fringe (smear zone), which increases mass removal efforts.	Equipment and materials that are necessary to implement this remedial alternative are readily available. Bench-Scale testing would be required to determine the site specific treatment chemistry and number of treatments. Pilot testing would be required to determine well spacing and radius of effective treatment. Chemical oxidation treatment would be combined with another remedial alternative, such as natural attenuation, to augment mass removal efforts. CEQA requirements would apply for the introduction of hyrogen peroxide into groundwater.
Natural Attenuation	Effective for treatment of VOCs & BTEX. Is effective at reducing mass or concentration of a compound by naturally occurring physical, chemical, and biological processes. Natural attenuation occurs at most contaminant sites but a varying rates and degrees of effectiveness. The total COI concentration at site monitoring wells has been stable to decreasing, therefore the plume can be classified as a "stable plume or shrinking plume", indicating that natural attenuation is occurring at the site.	On-going groundwater monitoring at the site could easily be used to monitor and evaluate natural attenuation progress at the site. Implementing another remedial alternative for mass removal within the hot spot/source area could reduce the mass loading rate for COIs to groundwater, thereby accelerating the natural attenuation process at the site.
Remedial Alternative	Effectiveness	Implementability
Ex-Situ Remedial Alternatives Dual Phase Extraction	Effective for treatment of VOCs & BTEX. Requires using an appropriate vapor treatment system. Additional treatment process will be required to address VOCs & BTEX in	alternative are readily available. This remediation alternative is
	the extracted groundwater. Dual phase extraction is most effective for low yielding aquifers. Can target capillary fringe (smear zone), which increases mass removal efforts.	required. Treated groundwater may be
		discharged to a local publicly-owned treatment works (POTW) with approval of the appropriate agency or surface water discharge (NPDES permit).

Evaluation Summary Remedial Alternatives for Groundwater

Remedial Alternative	Effectiveness	Implementability
Ex-Situ Remedial Alternatives		
Groundwater Extraction with Liquid-Phase Carbon Adsorption	Effective for mass removal and treatment of VOCs & BTEX. Long term system operation is typical. This remedial alternative requires the replacement of spent activated carbon.	Equipment and materials that are necessary to implement this remedial alternative are readily available. Treated groundwater may be discharged to a local publicly-owned treatment works (POTVI) with approval of the appropriate agency or surface water discharge (NPDES permit).
Groundwater Extraction with Air Stripping	Effective for mass removal and treatment of VOCs & BTEX. Long term system operation is typical. This remedial alternative will require an air emission control system.	Equipment and materials that are necessary to implement this remedial atternative are readily available. Treated groundwater may be discharged to a local publicly-owned trealment works (POTW) with approval of the appropriate agency or surface water discharge (NPDES permit). A permit from the SCAQMD for the air emission control will be required.
Groundwater Extraction with Ultraviolet (UV) Oxidation Treatment	Effective for mass removal and treatment of VOCs & BTEX. Long term system operation is typical. This remedial alternative will oxidize chemicals and as a result, is effective in reducing long term liability.	Equipment and materials that are necessary to implement this remedial alternative are readily available. Treated groundwater may be discharged to a local publicly-owned treatment works (POTW) with approval of the appropriate agency or surface water discharge (NPDES permit).

Evaluation Summary Remedial Alternatives for Soil

Remedial Alternative	Effectiveness	Implementability
In-Situ Remedial Alternatives		
Soil Vapor Extraction (SVE)	Effective at removal of VOCs & BTEX in high permeability soil.	Equipment and materials that are necessary to implement this remedial alternative are readily available.
	Less effective in soil with low permeability, such as clay. Under some conditions, SVE can be used in clay with a higher vacuum for a longer period of time.	
	Due to the amount of BTEX in soil a thermal oxidizer will be most efficient for vapor control.	
Bioventing	Effective at removal of VOCs & BTEX in high permeability soil.	Equipment and materials that are necessary to implement this remedial alternative are readily available.
·	Less effective in soil with low permeability, such as clay. Under some conditions, bioventing can be used in clay with a higher vacuum for a longer period of time.	A permit to construct and operate from the SCAQMD for the extraction system will be required.
Chemical Oxidation	Effective at removal of VOCs & BTEX in high permeability soil. Less effective in soil with low	Equipment and materials that are necessary to implement this remedial alternative are readily available.
	pemeability, such as clay. Under some conditions, bioventing can be used in clay with a higher vacuum for a longer period of time.	RWQCB will require soil vapor control during application of hydrogen peroxide. CEQA requirements would apply for addition of hydrogen peroxide into the subsurface soil.

Evaluation Summary Remedial Alternatives for Soil

Remedial Alternative	Effectiveness	Implementability
Ex-Situ Remedial Alternatives		
On-Site Soil Vapor Extraction	in high permeability soil. Less effective in soil with low permeability, such as clay. Under	An area to stockpile excavated soil is limited. Equipment and materials that are necessary to implement this remedial alternative are readily available.
	some conditions, SVE can be used in clay with a higher vacuum for a longer period of time.	A permit to operate the SVE unit from the SCAQMD will be required.
	Due to the amount of BTEX in soil a thermal oxidizer will be most efficient for vapor control.	Deeper excavation may be limited due to railroad tracks to the west and aboveground storage tanks to the east.
		Treated soil could be used as backfill, however the excavation could not remain open until treatment is complete.
On-Site Low Temperature Thermal Desorption (LTTD)	in high permeability soil.	An area to stockpile excavated soil is limited. Equipment and materials that are necessary to implement this
	Less effective in low permeability soil, such as clay, and soil with a high moisture content.	remedial alternative are readily available.
		A permit to construct and operate from the SCAQMD for the LTTD system will be required.
		Deeper excavation may be limited due to railroad tracks to the west and aboveground storage tanks to the east.
		Treated soil could be used as backfill, however the excavation could not remain open until treatment is complete. Therefore, the excavation would be backfilled with imported material and the treated soil would require offsite disposal after treatment.
Off-Site Land Farming	Will effectively remove VOC & BTEX by excavating impacted soil and transporting the soil offsite to an appropriate facility.	Equipment and materials necessary to implement this remedial alternative are readily available.
	When impacted soil is accepted by a treatment facility, the treatment facility	An excavation permit for VOC handling will be required from the SCAQMD.
	is responsible for meeting their specified cleanup levels.	Impacted soil must meet the acceptance criteria specified by the treatment facility.
		Excavation of deeper impacted soil will be limited due to the railroad tracks and aboveground storage tanks. Imported backfill will be required.

Evaluation Summary Remedial Alternatives for Soil

Remedial Alternative	Effectiveness	Implementability				
Ex-Situ Remedial Alternatives						
Off-Site Recycling	Will effectively remove VOC & BTEX by excavating impacted soil and transporting the soil offsite to an appropriate facility.	Equipment and materials necessary to implement this remedial alternative are readily available.				
	When impacted soil is accepted by a recycling facility, the recycling facility is responsible for producing a	An excavation permit for VOC handling will be required from the SCAQMD.				
	commercial grade asphalt product from the impacted soil.	Impacted soil must meet the acceptance criteria specified by the recycling facility.				
		Excavation of deeper impacted soil will be limited due to the railroad tracks and aboveground storage tanks. Imported backfill will be required.				
Off-Site LTTD	Effective at removal of VOCs & BTEX in high permeability soil.	Equipment and materials necessary to implement this remedial alternative are readily available.				
	Less effective in low permeability soil, such as clay, and soil with a high moisture content.	An excavation permit for VOC handling will be required from the SCAQMD.				
		Impacted soil must meet the acceptance criteria specified by the LTTD facility.				
		Excavation of deeper impacted soil will be limited due to the railroad tracks and aboveground storage tanks. Imported backfill will be required.				
Off-Site Disposal	Will effectively remove VOC & BTEX by excavating impacted soil and transporting the soil offsite to an appropriate facility.	Equipment and materials necessary to implement this remedial alternative are readily available.				
	Impacted soil is landfilled and chemical constituents are not destroyed, as a result, long term	An excavation permit for VOC handling will be required from the SCAQMD.				
	liability is not reduced.	Impacted soil must meet the acceptance criteria for the landfill facility.				
		Excavation of deeper impacted soil will be limited due to the railroad tracks and aboveground storage tanks. Imported backfill will be required.				

TABLE 4 **AVERAGE GROUNDWATER CONCENTRATION** (January 1997 - April 2000)

Monitoring Well	Total Xylene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Benzene (ug/L)	MBAS (mg/L)	1,1 DCA (ug/L)	1,1 DCE (ug/L)	PCE (ug/L)	Carbon Tetrachloride (ug/L)	Chloroform (ug/L)	1,2 DCA (ug/L)	TCE (ug/L)
Primary MCL	1,750	150	700	1	none	5	6	5	0.5	none	0.5	5
MW-1	182,338	73,412	31,200	60 ⁽³⁾	71.48	ND ⁽¹⁾	ND	ND ·	ND	108 ⁽²⁾	2,216	ND
MW-2	47,165	94,962	9,095	ND	16.12	ND	ND	ND	ND	ND	2,902	ND
MW-3	13,179	9,814	4,974	3.3 (2)	5.46	ND	ND	ND	3.40 ⁽²⁾	3.02 (2)	71.5 ⁽²⁾	ND
MW-4	74.86	35.62 ⁽²⁾	59.65	ND	0.32 (2)	ND	ND	1.05 ⁽²⁾	0.29 ⁽²⁾	0.29 ⁽²⁾	15.76	2.26 ⁽²⁾
MW-5	13.19 ⁽²⁾	1.35 ⁽²⁾	1.8 ⁽²⁾	ND	2.23	ND	ND	5.1 ⁽²⁾	643	241	ND	1.38 ⁽²⁾
MW-6	3.06 ⁽²⁾	0.29 (2)	0.52 (2)	0.30 (2)	2.21	ND	ND	1.65 ⁽²⁾	127	120	20.41 ⁽²⁾	1.64 ⁽²⁾
MW-7	20.50 ⁽²⁾	1.13 ⁽²⁾	2.6 ⁽²⁾	0.48 (2)	1.89	ND	ND	0.71 ⁽²⁾	10.89	13.61	142	1.92 ⁽²⁾
MW-8	3,730 ⁽²⁾	176 ⁽²⁾	1,392	4.75 ⁽²⁾	1.36	ND	ND	18.2 ⁽²⁾	34.61 ⁽²⁾	22.31 ⁽²⁾	10.64 ⁽²⁾	0.96 ⁽²⁾
MW-9	11.32 ⁽²⁾	2.9 ⁽²⁾	3.21 ⁽²⁾	0.33 (2)	0.98	40.51	10.07 ⁽²⁾	2.62 ⁽²⁾	ND	6.04	28.25	374
MW-10	2,008	619 ⁽²⁾	5,423	26.38 ⁽²⁾	17.5 ⁽⁴⁾	ND	ND	ND	ND	50.13 ⁽²⁾	3,694	ND
MW-11	0.72 ⁽²⁾	ND	ND	ND	9.11	ND ⁽⁵⁾	ND	3.76	ND	ND	21.39 ⁽²⁾	3.90 ⁽²⁾

⁽¹⁾ ND = Not detected above laboratory detection limit

⁽²⁾ Detected values and half the lowest detection limit used to calculate average concentration
(3) ND's not used to calculate average concentration
(4) November 1998 MBAS result currently considered an anomaly and not used to calculate average concentration
(4) April 2000 1,1 DCA result currently considered an anomaly and not used to calculate average concentration

TABLE 3 HISTORICAL GROUNDWATER ANALYTICAL RESULTS PILOT CHEMICAL COMPANY SANTA FE SPRINGS, CALIFORNIA

511100 pres 5121	15s1 143.29.14	nerra afters	Large (SA)	9%400%84	[5848-DA-6]	77. 0.5.	No. 1 1.44	Carbon	1 A 1383 LTA	1.5 984.4757	N. 1880.	11.50 (10.50 + 4.50)	Territoria	2008a Rail	Total .
		TPH	рН	MBAS	1,1-DCA	1,1-DCE	PCE	Tetrachloride	Chloroform	1,2 DCA	TCE	Benzene	Ethylbenzene	Toluene	Xylenes
Monitoring Well	Date	(mg/L)	units	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	Apr-91		7.39	0.80				NA 1	NA	NA	NA	ND 2 (2,500) 3	3,600	18,000	12,000
	Jan-94	1	7.0	0.90		1	1	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	9,700	52,000	59,000
	Apr-94	}	7.5	6.0	ND (25)	}	ND (25)	ND (25)	68	910	ND (25)	ND (5,000)	29,000	220,000	130,000
	Jul-94		7.2	7.5	ND (20)		ND (20)	28	48	870	ND (20)	ND (5,000)	9,300	26,000	40,000
	Nov-94		NΑ	NA	NA NA		NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA
	Jun-95	NA	NA	NA	NA NA		NA	NA NA	NA '	NA	NA NA	NA NA	NA NA	NA	NA NA
MW-1	Sep-95	15.0	7.0	60	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	4,200	ND (250)	ND (250)	48,000	56,000	319,000
i	Dec-95	7.2	7.2	170	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	2,600	ND (50)	ND (5,000)	40,000	55,000	224,000
	Mar-96	16.0	7.1	29	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	3,200	ND (250)	ND (5,000)	58,000	85,000	282,000
	Jan-97	15.0	6.95	72	ND (50)	ND (50)	ND (50)	ND (50)	51	3,700	ND (50)	ND (5,000)	34,000	96,000	200,000
	Apr-97	19.0	7.11	25	ND (50)	ND (50)	ND (50)	ND (50)	ND (50).	3,300	ND (50)	ND (5,000)	48,000	73,000	310,000
	Oct-97	6.5	6.85	33	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	3,700	ND (50)	52	23,000	65,000	110,000
ĺ	May-98	7.9	7.01	18	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	2,200	ND (250)	ND (250)	35,000	110,000	200,000
ļ	Nov-98	ND (1.0)	7.1	400	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	2,700	ND (250)	ND (250)	47,000	44,000	340,000
1	Aug-99	ND(0.5)	7.25	11.9	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	760	ND (25)	68	20,200	57,000	85,300
.]	Dec-99	ND(0.5)	7.00	5.72	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	700	ND (250)	ND (250)	19,800	71,000	96,900
	Apr-00	ND(0,5)	7.21	6.22	ND (500)	ND (500)	ND (500)	ND (500)	736.0	670	ND (500)	ND (500)	22,600	71,300	116,500
	Apr-91		7.29	0.20				NA	NA	NA	NA	ND (500)	970	7,500	4,000
	Jan-94		7.3	1.50				ND (130)	ND (130)	ND (130)	ND (130)	ND (130)	590	1,700	3,500
	Арг-94		7.7	1.20	ND (5)		ND (5)	ND (5)	ND (5)	400 ⁴	ND (5)	ND (500)	12,000	29,000	47,600
	Jul-94		7.7	11	ND (20)		ND (20)	ND (20)	ND (20)	360	ND (20)	ND (250)	13,000	12,000	20,600
	Nov-94		6.7	0.68	ND (1,330)		ND (1,330)	ND (1,330)	ND (1,330)	1,600	ND (1,330)	ND (1,300)	9,300	73,000	44,000
	Jun-95	ND (0.5)	7.2	6.70	ND (50)		ND (50)	ND (50)	1,800	ND (50)	ND (50)	ND (5,000)	3,700	61,000	27,800
MW-2	Sep-95	0.70	7.1	11	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	2,300	ND (500)	ND (50)	2,300	29,000	12,600
	Dec-95	0.77	7.2	11	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	1,600	ND (50)	ND (500)	9,200	86,000	41,700
	Mar-96	ND (0.5)	7.3	8.20	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	1,300	ND (50)	ND (500)	6,200	41,000	22,400
	Jan-97	1.3	6.82	69	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	4,400	ND (50)	ND (5,000)	14,000	140,000	81,000
	Apr-97	1.9	6.94	1.90	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	3,900	ND (50)	ND (5,000)	13,000	140,000	87,000
	Oct-97	0.94	6.70	0.53	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	5,500	ND (500)	ND (500)	15,000	180,000	63,000
	May-98	0.43	7.03	1.10	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	1,600	ND (500)	ND (500)	6,100	120,000	30,000
J	Nov-98	1.0	7.2	38	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	1,900	ND (250)	ND (250)	8,500	62,000	44,000
}	Aug-99	ND (0.5)	6.97	13.8	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	2,500	ND (25)	ND (25)	6,600	46,500	28,700
	Dec-99	ND (0.5)	7.10	1.75	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	1,970	ND (50)	ND (50)	5,260	39,300	23,800
	Apr-00	ND (0.5)	7.14	2.79	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	1,450	ND (50)	ND (50)	4,300	31,900	19,820

TABLE 3 HISTORICAL GROUNDWATER ANALYTICAL RESULTS PILOT CHEMICAL COMPANY SANTA FE SPRINGS, CALIFORNIA

				NID 10		A DOE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Carbon							Total
an and a substitution of the	Date	TPH (mg/L)	pH units	MBAS (mg/L)	1,1-DCA (ug/L)	1,1-DCE (ug/L)	PCE (ug/L)	Tetrachloride (ug/L)	(ug/L)	1,2 DCA	TCE (ug/L)	Benzene	Ethylbenzene	Toluene	Xylenes
Monitoring Well	7 6607 70	10.00 P.	Acre 140 1		j., (ug/u)	<u> </u>	(ug/L)			(ug/L)		(ug/L)	(ug/L)	(ug/L)	(ug/L)
	Apr-91	1	7.17	2.00				NA NA	NA NA	NA NA	NA NA	ND (13,000)	14,000	110,000	52,000
	Jan-94		6.9 7.4	1.10	ND (E)		ND (E)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	15,000	24,000	68,000
	Apr-94 Jul-94		7.4	6.60 10	ND (5)		ND (5) ND (20)	9.2	5.1 ND (20)	16	ND (5)	ND (500)	14,000	21,000	25,500
	Nov-94	1	6.7	0.46	ND (20) ND (250)		ND (20)	ND (20) ND (250)	ND (20) ND (250)	ND (20)	ND (20)	ND (100) ND (250)	6,500 11,000	2,800 12,000	2,360 8,900
	Jun-95	ND(0.5)	7.0	5	ND (0.5)		ND (250)	ND (250)	ND (250) ND (0.5)	ND (250) 19	ND (250) ND (0.5)	ND (250) ND (500)	7,800	7,400	6,900
MW-3	Sep-95	0.65	6.9	11	ND (5)	ND (5)	ND (5)	15	ND (5)	52	ND (5)	8.2	7,800	1,200	15,500
10100-5	Dec-95 5	0.88	7.1	5			1	i	13		1 ' '	ND (500)	1 '		
	Mar-96	0.00	7.1	9.20	ND (5) ND (5)	ND (5) ND (5)	ND (5) 8,7	28 14	7.8	220 26	ND (5) ND (5)	ND (500)	3,900 10,000	47,000 21,000	44,900 29,800
	Jan-97	0.93	7.03	14	ND (5)	ND (5)	ND (5)	7.0	6.4	25.0	ND (5)	ND (500)	11,000	12,000	32,000
	Apr-97	1.70	6.85	9	ND (0.5)	ND (0.5)	ND (0.5)	5.1	2.4	38.0	1.2	8.7	5,500	2,800	5,600
	Oct-97	0.34	6.86	6.90	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)	130	ND (13)	ND (13)	6,800	4,400	5,000
	May-98	ND (0.5)	7.23	1.50	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	460	1,100	1,800
	Nov-98	0.68	7.20	4.10	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	77	ND (50)	ND (50)	4,600	15,000	20,000
	Aug-99	ND (0.5)	7.26	3.30	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	52	ND (5)	ND (5)	2,730	5,210	9,480
	Dec-99	ND (0.5)	7.30	2.11	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	70	ND (50)	ND (50)	3,100	12,200	10,720
	Apr-00	ND (0.5)	7.28	2.77	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	155	ND (50)	ND (50)	5,600	25,800	20,830
`	Apr-91		NA	NA				NA	NA .	NA	NA	NA	NA	NΑ	NA
	Jan-94		7.2	ND (0.5)				ND (0.5)	ND (0.5)	ND (0.5)	1.4	ND (0.5)	7.5	29	31
	Apr-94		7.5	0.058	ND (0.5)		ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	2.5	ND (5)	37	210	116
	Jul-94		7.3	1.60	ND (0.5)		1.0	ND (0.5)	ND (0.5)	ND (0.5)	5,4	ND (0.5)	13 .	52	33
	Nov-94		6.8	0.10	ND (5)		ND (5)	ND (5)	ND (5).	6.8	ND (5)	ND (5)	83	200	180
	Jun-95	ND(0.5)	7.3	0.04	ND(0.5)		0.91	ND (0.5)	ND (0.5)	2.7	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
MW-4	Sep-95	0.58	7.0	0.66	0.82	ND (0.5)	0.98	ND (0.5)	ND (0.5)	2.1	3.1	6.0	66	180	154
	Dec-95	0.82	7.2	2.10	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	76	6.2	ND (500)	9,200	19,000	38,100
	Mar-96 ⁷	ND (0.5)	7.4	0.21	ND (0.5)	ND (0.5)	4.8	1.20	ND (0.5)	11	1.2	ND (0.5)	54 ⁴	110 4	196 ⁴
	Jan-97	ND (0.5)	6.95	ND (.10)	0.52	ND (0.5)	1.2	ND (0.5)	ND (0.5)	27	2.3	ND (5)	49	51	330
	Apr-97	ND (0.05)	7.02	0.28	ND (0.5)	ND (0.5)	1.3	ND (0.5)	ND (0.5)	17	3.0	ND (0.5)	8.7	4.8	10
	Oct-97	ND (0.05)	6.6	0.15	ND (0.5)	ND (0.5)	1.3	ND (0.5)	ND (0.5)	21	3.1	ND (0.5)	28	19	26
	May-98	ND (0.05)	7.48	0.33	ND (0.5)	ND (0.5)	1.7	ND (0.5)	ND (0.5)	14	3.1	ND (0.5)	5.5	1.4	5.8
	Nov-98	ND (0.05)	7.4	0.27	ND (0.5)	ND (0.5)	1.4	0.78	0.56	8.4	2.2	ND (0.5)	270	49	93
	Aug-99	ND (0.5)	7.34	0.30 0.23	ND (0.5)	ND (0.5)	1.0	ND (0.5)	ND (0.5)	16.6	1.9	ND (0.5)	93.8	117	83.6
	Dec-99 Apr-00	ND (0.5)	7.41 7.41	0.23 0.26	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5)	ND (0.5)	10.9	2.2	ND (0.5)	6.9	ND (0.5)	3.5
	Whi-on ?	ND (0.5)	1497A	U.ZD	ND (0.5)	(פיס) חווי	(פיט) חאו	ND (0.5)	ND (0.5)	11.2	ND (0.5)	ND (0.5)	15.3	43	47

TABLE 3 HISTORICAL GROUNDWATER ANALYTICAL RESULTS PILOT CHEMICAL COMPANY SANTA FE SPRINGS, CALIFORNIA

	La diamenta	Estra visada e	22044D	1888 S S S S S S S S S S S S S S S S S S	raniberrustra	SK 1858485	25 % C 12	Garbon	Elemente esta E	erda (relet rel	Paratary v	HAWARAN TRANSPER	\$200,000 a	Marria Sila	Total
		TPH	рH	MBAS	1.1-DCA	1.1-DCE	PCE	Tetrachloride	Chloroform	1,2 DCA	TCE	Benzene	Ethylbenzene	Toluene	Xylenes
Monitoring Well	Date	(mg/L)	units	(mg/L)	(ug/L)	(ug/L)	(tig/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	Apr-91		7.28	0.2				NA	NA	NA	NA	3.2	ND (0.5)	1.2	ND (1)
	Jan-94		7.3	1.5				660	120	ND (10)	ND (10)	ND (10)	ND (10)	18	44
	Apr-94	,	7.6	0.57	ND (2.5)		ND (2.5)	470 ⁴	120	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)
	Jul-94		7.5	4.10	ND (5)		ND (5)	370 4	98.	88	ND (5)	ND (5)	110	370 4	286
	Nov-94		7.3	0.95	ND (25)		ND (25)	900	320	26	ND (25)	ND (25)	ND (25)	35	ND (75)
	Jun-95	ND(0.5)	7.5	0.73	ND(5)		ND(5)	460 ⁴	230	ND (5)	ND (5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
MVV-5	Sep-95 6	ND(0.5)	7.4	1.7	ND (5)	ND (5)	ND (5)	520	280	ND (5)	ND (5)	ND (0.5)	14	61	50.5
	Dec-95	ND(0.5)	7.6	1.9	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)
	Mar-96	ND (0.5)	7.7	1.4	ND (5)	ND (5)	ND (5)	340	160	ND (5)	ND (5)	ND (0.5)	3.5	3.6	16.5
	Jan-97	ND (0.5)	7.4	5	ND (5)	ND (5)	ND (5)	750	310	ND (5)	ND (5)	ND (0.5)	12	5.9	79
	Арг-97	0.29	7.38	4.8	ND (5)	ND (5)	ND (5)	930	330	ND (5)	ND (5)	ND (0.5)	ND (0.5)	2.8	4.6
	Oct-97 10	0.56	7.2	1.1	ND (2.5)	ND (2.5)	7.7	1,400	560	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (7.5)
	May-98	ND (0.5)	7.47	0.81	ND (0.5)	ND (0.5)	3.3	490	120	ND (0.5)	2.3	ND (0.5)	1.0	0.86	5.2
	Nov-98	ND (0.5)	7.5	1.4	ND (0.5)	ND (0.5)	3.1	390	130	ND (0.5)	1.2	ND (0.5)	ND (0.5)	ND (0.5)	1.7
	Aug-99	ND (0.5)	7.34	2.37	ND (5)	ND (5)	ND (5)	483	218	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)
	Dec-99 Apr-00	ND (0.5) ND (0.5)	7.37 7.40	1.36 1.00	ND (5) ND (5)	ND (5) ND (5)	ND (5) 17.00	385 316	137 126	ND (5) ND (5)	ND (5)	ND (5) ND (5)	ND (5)	ND (5) ND (5)	ND (10) ND (10)
	Apr-91	MAD (0.5)	7.27	ND (0.1)	(O) (J)	ND (3)	17.00	NA	NA	NA	NA NA	0.61	ND (5) ND (0.5)	ND (0.5)	ND (1)
	Jan-94		7.4	1.1				49	25	7.1	ND (1.3)	ND (1.3)	ND (0.3) ND (1.3)	ND (0.3)	ND (3.8)
	Apr-94		7.6	1.4	ND (0.5)	,	0.74	39 4	25 4	ND (0.5)	1.4 4	ND (0.5)	0.67	ND (0.5)	0,6
	Jul-94		7.6	0.7	ND (0.5)		0.65	38 4	28	ND (0.5)	1.5	ND (0.5)	21	42 4	50 ⁴
	Nov-94		7.5	1.4	ND (1.0)		ND (1.0)	38	21	7.9	1.0	ND (0.3)	6.7	30	22
	Jun-95	ND(0.5)	7.5	0.48	ND(5)		ND(5)	110	36	ND (5)	ND (5)	ND (0.5)	ND (0.5)	ND (0.5)	0.72
MW-6	Sep-95	ND(0.5)	7.5	1	ND (5)	ND (5)	ND (5)	150	66	13	ND (5)	ND (0.5)	26	89	17
	Dec-95	ND(0.5)	7.6	2.7	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)
	Mar-96 8	ND (0.5)	7,6	2.2	ND (0.5)	ND (0.5)	3.50	270	120	24	0.88	ND (0.5)	3.6	4.2	16.6
	Jan-97	ND (0.5)	7.56	2.5	ND (5)	ND (5)	ND (5)	81	99	14	ND (5)	ND (0.5)	ND (0.5)	ND (0.5)	4.1
	Apr-97	0.61	7.49	0.54	ND (5)	ND (5)	ND (5)	91	130	20	ND (5)	ND (0.5)	ND (0.5)	ND (0.5)	6.7
	Oct-97 11	0.21	7.03	3.1	ND (0.5)	ND (0.5)	1.3	55	210	33	0.65	ND (0.5)	ND (0.5)	ND (0.5)	3.4
	May-98 12	0.17	7.43	0.81	ND (0.5)	ND (0.5)	2.3	130	47	ND (0.5)	4.5	ND (0.5)	2.4	0.6	8.3
	Nov-98	0.45	7.4	2	ND (0.5)	ND (0.5)	2.6	81	79	21	1.7	0.65	ND (0.5)	ND (0.5)	ND (1.5)
	Aug-99	ND (0.5)	7.21	4.46	ND (2.5)	ND (2.5)	ND (2.5)	183	143	36	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (5)
	Dec-99	ND (0.5)	7.31	1.57	ND (5)	ND (5)	ND (5)	291	. 177	23	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)
	Apr-00	ND (0.5)	7.36	2.67	ND (0.5)	ND (0.5)	2.00	105	76	15.9	1.30	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)

TABLE 3 HISTORICAL GROUNDWATER ANALYTICAL RESULTS PILOT CHEMICAL COMPANY SANTA FE SPRINGS, CALIFORNIA

		503/40	ight salkt		Barriot II		10.20	Carbon			Fr. GÖAVFS	RE 18750 67 1 47	1	NERSELAI	, Total
		TPH	pН	MBAS	1,1-DCA	1,1-DCE	PCE	Tetrachloride		1,2 DCA	TCE	Benzene	Ethylbenzene	Toluene	Xylenes
Monitoring Well	Date	(mg/L)	units	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/Ĺ)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(úg/L)
	Apr-91		7.44	ND (0. 1)				NA	NA	NA	N/A	ND (2)	4.7	6.1	ND (4)
	Jan-94	1	6.9	ND (0.5)				11	11	24	2.6	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.5)
	Apr-94		7.5	0.53	ND (0.5)		ND (0.5)	8.9 ⁴	11	494	1.6	ND (0.5)	1.6	4.7	3.76
	Jul-94	{	7.4	1.2	ND (0.5)		ND (0.5)	7.4	6.6	54	1.6	ND (0.5)	9.2	22	27.5
	Nov-94		6.8	1.5	ND (25)		ND (25)	51	44 ·	1,100	ND (25)	ND (25)	ND (25)	420	100
	Jun-95	ND (0.5)	7.4	0.17	ND (0.5)		ND (0.5)	4.6	6.6	68 ⁴	ND (0.5)	ND (5)	200	230	520
MW-7	Sep-95	ND (0.5)	7.4	0.5	ND (0.5)	ND (0.5)	0.61	8.8	8.8	65	2.6	ND (0.5)	30	26	32.2
	Dec-95	ND (0.5)	7.6	3.8	ND (5)	ND (5)	ND (5)	18	11	310	ND (5)	ND (5)	51	7.0	32
	Маг-96	ND (0.5)	7.6	2.1	ND (0.5)	ND (0.5)	3.3	1.9	18	110	0.97	0.8	26	90	119
	Jan-97	ND (0.5)	7.22	8.1	ND (5)	ND (5)	ND (5)	34	38	510	ND (5)	1.8	ND (0.5)	ND (0.5)	4.3
	Apr-97	0.25	7.67	2.5	ND (5)	ND (5)	ND (5)	13	14	240	ND (5)	ND (5)	18	6.9	150
	Oct-97	ND (0.05)	7.24	0.61	ND (0.5)	ND (0.5)	0.74	10	12 ⁻	210	0.77	0.54	0.99	0.67	3.1
	May-98	ND (0.05)	7.46	0.54	ND (0.5)	ND (0.5)	1.5	6.6	7.6	26	2.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.5)
	Nov-98	ND (0.05)	7.5	0.76	ND (0.5)	ND (0.5)	1.3	1.9	2.3	25	2.0	ND (0.5)	0.59	ND (0.5)	4.4
1	Aug-99	ND (0.05)	7.41	0.47	ND (0.5)	ND (0.5)	ND (0.5)	6.1	6.7	24.8	1.0	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	Dec-99	ND (0.5)	7.34	0.98	ND (0.5)	ND (0.5)	ND (0.5)	4.3	8.4	42.1	1.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	Apr-00	ND (0.5)	7.35	1.18	ND (0.5)	ND (0.5)	1.1	11.2	19.9	60.3	2.6	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	Apr-91		7.2	ND (0.1))			NA	NA	NA	NA	ND (50)	180	550	740
	Jan-94		7.4	0.5	l .		l i	ND (130)	ND (130)	ND (130)	ND (130)	ND (130)	3,400	12,000	21,000
	Арг-94		7.8	0.43	ND (5)		ND (5)	ND (5)	10	ND (5)	ND (5)	ND (250)	3,400	7,600	12,400
	Jul-94		7.9	1.3	ND (5)		ND (5)	27	21	22	3.0	39	2400 4	2800 4	10000 ⁴
	Nov-94		7.5	0.86	ND (1,000)		ND (1,000)	ND (1,000)		ND (1,000)			6,200	27,000	23,000
	Jun-95	ND (0.5)	7.5	0.3	ND (5)		ND (5)	ND (5)	25	ND (5)	ND (5)	ND (50)	400	160	5,900
MW-8	Sep-95	ND (0.5)	7.6	2.8	ND (5)	ND (5)	ND (5)	ND (5)	17	ND (5)	ND (5)	ND (500)	2,000	1,500	8,300
	Dec-95	ND (0.5)	7.9	1.8	ND (5)	ND (5)	ND (5)	22	51	7.5	ND (5)	ND (500)	ND (500)	ND (500)	7,800
	Mar-96	ND (0.5)	7.6	1	ND (0.5)	ND (0.5)	9.4	5.8	24	2.4	0.76	ND (5)	400	13	1,470
	Jan-97	0.65	7.41	0.88	ND (5)	ND (5)	ND (5)	ND (5)	11	ND (5)	ND (5)	ND (50)	2,300	ND (50)	3,600
	Apr-97	0,30	7.37	2.7	ND (1)	ND (1)	ND (1)	ND (1)	3.8	ND (1)	ND (1)	6.5	530	17	ND (750)
	Oct-97	ND (0.05)	7.19	0.12	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	4,800	290	14,000
	May-98	ND (0.05)	7.38	0.91	ND (0.5)	ND (0.5)	1.6	160	51	ND (0.5)	2.2	ND (0.5)	72	39	260
	Nov-98	6.5	7.9	1.9	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	30	2,700	160	7,300
	Aug-99	ND (0.5)	7.33	0.75	ND (2.5)	ND (2.5)	ND (2.5)	97 ND (25)	49 ND (25)	7.5	ND (2.5)	ND (2.5)	23	25 775	60
	Dec-99 Apr-00	ND (0.5)	7.40	3.02 0.59	ND (25)	ND (25)	140 1.5	ND (25) 17.4	ND (25) 26,2	65.0 11.4	ND (25) 2.5	ND (25)	695	775 75.4	4,180 63
	Apr-00	ND (0.5)	7.39	0.59	ND (0.5)	ND (0.5)	1.5	17.4	20.2	11.4	2.5	ND (0.5)	12.8	/5.4	- 63

TABLE 3 HISTORICAL GROUNDWATER ANALYTICAL RESULTS PILOT CHEMICAL COMPANY SANTA FE SPRINGS, CALIFORNIA

10 17 19 10 12 20 1		(0.5.5×0.638734	\$1868E.5	্র বিশ্ববুদ্ধ সিংখ	18697.63	g the lawly in		Carbon	11.176796719-41		eraze, intig	P11.3787. T.4.3	er orregering	DANGER VERV	Total
		TPH	ρН	MBAS	1,1-DCA	1,1-DCE	PCE	Tetrachlonde	Chloroform	1.2 DCA	TCE	Benzene	Ethylbenzene	Toluene	Xylenes
Monitoring Well	Date	(mg/L)	units	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	Apr-91		7.54	0.1				NA	NA	NA	NA	4.8	2.7	2.3	33
	Jan-94		7.1	0.8				ND (10)	ND (10)	ND (10)	410	ND (10)	ND (10)	ND (10)	ND (30)
	Apr-94	}	7.6	ND (0.025)	2 4		ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	73	ND (0.5)	0.69	ND (0.5)	ND (0.5)
	Jul-94		7.6	0.2	ND (5)		ND (5)	ND (5)	ND (5)	ND (5)	110	ND (5)	ND (5)	ND (5)	ND (5)
	Nov-94		7.1	ND (0.1)	6.2		ND (5)	ND (5)	ND (5)	ND (5)	220	ND (5)	150	33	150
	Jun-95	ND (0.5)	7.2	0.01	17	6.4	ND (5)	ND (5)	ND (5)	ND (5)	300	ND (0.5)	ND (0.5)	1.1	1.2
MW-9	Sep-95	ND (0.5)	7.2	0.55	54	14	ND (5)	8.1	6.5	ND (5)	650	0.68	20	59	67
	Dec-95	ND (0.5)	7.3	1.4	55	12	ND (5)	ND (5)	7.2	ND (5)	620	ND (5)	58	69	184
	Mar-96	ND (0.5)	7.3	2	29	6.2	ND (5)	ND (5)	ND (5)	78	470	ND (5)	41	18	218
	Jan-97	ND (0.5)	7.17	1.2	16	ND (5)	ND (5)	ND (5)	5.6	30	210	0.61	18	8.8	86
	Apr-97 9	ND (0.05)	7.15	0.19	38	13	1.6	ND (0.5)	5.7	11	350	0.57	ND (0.5)	ND (0.5)	ND (1.5)
	Oct-97	ND (0.05)	6.9	0.39	52	14	ND (2.5)	ND (2.5)	6	6.6	600	ND (2.5)	ND (2.5)	ND (2.5)	ND (7.5)
	May-98	ND (0.05)	7.12	0.63	63	14	ND (2.5)	ND (2.5)	7.1	7.1	710	ND (2.5)	5.3	13	ND (7.5)
	Nov-98	0.43	7.2	4.1	35	7.8	ND (2.5)	ND (2.5)	6.8	100	280	ND (2.5)	ND (2.5)	ND (2.5)	ND (7.5)
	Aug-99	ND (0.5)	7.21	0.91	24.7	9.3	0.9	ND (0.5)	3	26.3	190	ND (0.5)	1.2	ND (0.5)	1.6
	Dec-99 ¹⁶	ND (0.5)	7.26	0.23	33.4	8.0	0.5	ND (0.5)	4.1	24	200	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	Apr-00	ND (0.5)	7.11	0.18	62	12.0	13	ND (5)	10	21	452	ND (5)	ND (5)	ND (5)	ND (10)
	Apr-91		7.44	1.2				NA	NA	NA	NA	ND (10)	27	35	170
	Jan-94		7.2	1.1				ND (50)	ND (50)	1,500	ND (50)	ND (50)	570	ND (50)	410
	Apr-94		7.4	3,9	ND (5)		ND (5)	ND (5)	8.1	660 ⁴	ND (5)	5.2	250	ND (5)	15
	Jul-94		7.3	14	ND (5)		ND (5)	ND (5)	20	2, 100 4	8.3	ND (250)	1,600	2,500	1,960
	Nov-94		7	1.1	ND (50)		ND (50)	ND (50)	ND (50)	3,900	ND (50)	ND (50)	3,400	220	2,400
	Jun-95	ND (0.5)	7.3	0.03	ND (50)		ND (50)	ND (50)	ND (50)	2,900	ND (50)	ND (50)	2,100	ND (50)	ND (50)
MW-10	Sep-95	0.92	7.1	5.3	ND (5)	ND (5)	ND (5)	9.1	35,	5,600	8.6	51	4,400	130	678
	Dec-95	0.34	7.4	22	ND (50)	5,500	ND (50)	ND (500)	18,000	ND (500)	3,700				
	Mar-96	0.55	7.4	15	ND (50)	2,200	ND (50)	ND (50)	1,500	ND (50)	130				
	Jan-97	ND (0.5)	7.25	60	ND (250)	5,200	ND (250)	ND (250)	19,000	ND (250)	1,100				
	Арг-97	0.38	7.4	4.4	ND (5)	ND (5)	ND (5)	ND (5)	20.	1,300	ND (5)	12	640	12	57
	Oct-97	0.3	6.99	18	ND (25)	5,100	ND (25)	46	6,600	26	130				
	May-98	0.3	7.26	1.7	ND (25)	2,600	ND (25)	43	3,200	820	2,100				
	Nov-98	160 ND (0.5)	7.4 7.32	1,700 17.3	ND (25)	1,900	ND (25)	ND (25)	2,100	380	1,000				
	Aug-99 Dec-99	ND (0.5) ND (0.5)	7.32 7.10	17.3 8.37	ND (25) ND (25)	2,170 5,250	ND (25) ND (25)	ND (25) 60	2,750 4,500	525 3,140	2,450 4,855				
	Apr-00	ND (0.5)	7.10	12.7	ND (50)	ND (50)	ND (25)	ND (25)	76	6,030	ND (50)	ND (50)	4,500	ND (50)	4,368
	Aprou	(פיס) בוויי	1,20	144 (2)	IAD (OD)	140.(30)	140 (30)	(אט (טט)	/1/0 (1111)		140 (30)	MD (30)	4,550	140 (50)	4,300

TABLE 3 HISTORICAL GROUNDWATER ANALYTICAL RESULTS PILOT CHEMICAL COMPANY SANTA FE SPRINGS, CALIFORNIA

Total Tota							<u> </u>		· · · · · · · · · · · · · · · · · · ·						SANTA FE	SPRINGS, CA
Monitoring Well Dafes Cright Paris Cright Cri			TOU	700	INADA C		A A DOC	DOF .		المناضية	2 50					American Control
Apr-91			1489000000000000000000000000000000000000		250 A . M. 1200 M	the state of the s			The second of the second	A Section 18 Section 1		1 76 17 8 9 8 8 8 8 8		the second of the second of the second	Last 1402 N to 200 Line	British Today Web Control
Jan-94	Monitoring Well		(munic)			(ug/L)	(ug/L)	(ug/L)						10 -0 100	(ug/L)	
Apr-94			i	l												
Nov-94 Nov-95 N		Jan-94		7.1	1.4		ļ	ŀ	ND (1.3)	ND (1,3)		3.3	ND (1.3)	ND (1.3)	ND (1.3)	ND (3.8)
Nov-94		Apr-94	l		18	ND (0.5)	l .	2.4	ND (0.5)	1.3	54 ⁴	5.1	1.2	4.7	0.69	1.5
MW-11 Sep-95 ND (0.5) 7.3 1 ND (5)		Jul-94		7.3	11	ND (10)	1	ND (10)	ND (10)	ND (10)	ND (10)	80	ND (10)	92	340	327
MW-11		Nov-94		1	1.7	ND (2.5)		ND (2.5)	2.6	ND (2.5)	100	5.3	9.6	4.1	10	7.5
Dec-95		Jun-95	ND (0.5)	7.3	1	ND (5)		ND (5)	ND (5)	ND (5)	12	ND (5)	ND (0.5)	ND (0.5)	ND (0.5)	11
Mar-96 0.8 7.2 24 ND (5) ND (5) 6.9 ND (5) ND (5	MW-11	Sep-95	ND (0.5)	7.1	8.3	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	83	ND (50)	ND (5)	110	530	353
Jan-97 0.62 7.14 9.8 ND (5) ND (5) 5.2 ND (5) ND (5) 38 ND (5)		Dec-95	0.68		23	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	90	ND (5)	ND (5)	r i	ND (5)	21
Apr-97 0.52 7.13 7.9 ND (1) ND (1) 3.6 ND (0.5) ND (0		Mar-96				ND (5)	ND (5)	,	, ,	ND (5)	73	ND (5)	ND (5)	47	25	
Oct-97 ND (0.05) 6.82 9.7 ND (0.5)				(, , ,	1	, ,	, ,	38	, , ,	ND (5)	ND (5)	ND (5)	ND (5)
May-98 ND (0.05) 6.95 7.9 ND (0.5)			1						ND (1)	ND (1)			ND (0.5)		ND (0.5)	ND (1.5)
Nov-98 ND (0.05) 7.1 21 ND (0.5) ND (0.5) 3.9 ND (0.5) ND (0.5) 27 5.2 ND (0.5) ND (ND (0.05)	6.82	9.7	ND (0.5)	ND (0.5)	4.3	ND (0.5)	ND (0.5)	28	5.2	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.5)
Aug-99 ND (0.5) 6.97 11.4 ND (0.5) ND (0.5) 2.7 ND (0.5) ND (0.5) 2.7 ND (0.5) ND (0.5		May-98 13	ND (0.05)	6.95	7.9	ND (0.5)	ND (0.5)	4	ND (0.5)	ND (0.5)	ND (0.5)	3.9	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.5)
Dec-99 ND (0.5) 7.07 3.77 ND (0.5)		Nov-98	ND (0.05)	7.1	21	ND (0.5)	ND (0.5)	3.9	ND (0.5)	ND (0.5)	27	5.2	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.5)
Apf-00 ND (0.5) 7.13 1.43 26 ND (0.5) 4 ND (0.5) 0.5 ND (0.5) 3.3 ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (1.0)		Aug-99	ND (0.5)	6.97		ND (0.5)	ND (0.5)	2.7	ND (0.5)	ND (0.5)		4.2	3.8	ND (0.5)	ND (0.5)	2.3
DUP-1(MW-7) Apr-97 NA NA NA NA ND (2.5)		Dec-99							La caracteristic de la companya de l	ND (0.5)			ND (0.5)	ND (0.5)		
DUP-2(MW-3) Apr-97 NA NA NA NA ND (0.5) ND (0.5) 1.2 ND (0.5) ND (Apr-00	ND (0.5)	7.13	1,43	. 26	ND (0.5)	4	ND (0.5)	0.5	ND (0.5)	े 3.3 ∵	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
DUP-(MW-4)	DUP-1(MW-7)	Apr-97	NA	NA	NA.	ND (2.5)	ND (2.5)	ND (2.5)	13	12	200	ND (2.5)	ND (2.5)	22	8.3	150
DUP-(MW-7)		Apr-97	NA		l	ND (0.5)	ND (0.5)		ND (0.5)	ND (0.5)		l	ND (0.5)	1	4.6	
MW-98 14 Nov-98 NA NA NA ND (250) ND (2		Oct-97				, .	ND (0.5)	I	, ,	ND (0.5)						•
MW-99 15 Nov-98 NA NA NA NA NA ND (5) ND (2.5) N		Oct-97	NA	NA	NA	ND (0.5)	ND (0.5)	0.64	8.5	12	210	0.68	0.54	1.1	0.86	3.7
DUP-1(MW-3) Aug-99 NA NA NA NA ND (5) ND (10) N	MW-98 ¹⁴	Nov-98	NA	NA	NA :	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	3,300	ND (250)	ND (250)	7,100	130,000	47,000
DUP-2(MW-6) Aug-99 NA NA NA NA ND (5) ND (5) ND (5) 201 145 35 ND (5) ND (5) ND (5) ND (5) ND (10) DUP-1(MW-7) Dec-99 NA NA NA NA ND (0.5)	MW-99 ¹⁵	Nov-98	NA	NA	NA	5.6	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	240	47	95
DUP-1(MW-7) Dec-99 NA NA NA ND (0.5) ND (0.5) ND (0.5) 4.1 8.1 40.7 1.5 ND (0.5) ND (0.5) ND (0.5) ND (1.0) DUP-2(MW-1) Dec-99 NA NA NA NA ND (250) ND (5.0)	DUP-1(MW-3)	Aug-99	NA NA	NA :	NA	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	70	ND (5)	ND (5)	3,450	6,800	11,600
DUP-2(MW-1) Dec-99 NA NA NA ND (250) ND	DUP-2(MW-6)	Aug-99	NA	NA '	NA	ND (5)	ND (5)	ND (5)	201	145	35	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)
DUP-1(MW-9) Apr-00 NA NA NA 64 11 13 ND (5.0) 10 20 488 ND (5.0) ND (5.0) ND (5.0) ND (5.0) ND (10)	DUP-1(MW-7)	Dec-99	NA	NA .	NA	ND (0.5)	ND (0.5)	ND (0.5)	4.1	8.1	40.7	1.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
- 100.56 05.01 0 9 90.7 5 16.6 9001 1.8 3 5 6 16.5 5 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DUP-2(MW-1)	Dec-99	NA.	NA	NA	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)		ND (250)	ND (250)	32,800	122,000	160,000
DUP-2(MW-11) Apr-00 NA			NA	NA	NA NA	64	11	13	ND (5.0)	10	20	488	ND (5.0)	ND (5.0)	ND (5.0)	ND (10)
	DUP-2(MW-11)	Apr-00	NA	NA 🌣	NA	19.3	ND (0.5)	2.8	ND (0.5)	ND (0.5)	ND (0.5)	2.4	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)

Notes:

¹NA = Not Analyzed

²ND = Not Detected above laboratory limit

()3 = Detection Limit

⁴Estimated concentration

⁵ Chlorobenzene detected at 16,000 ppb

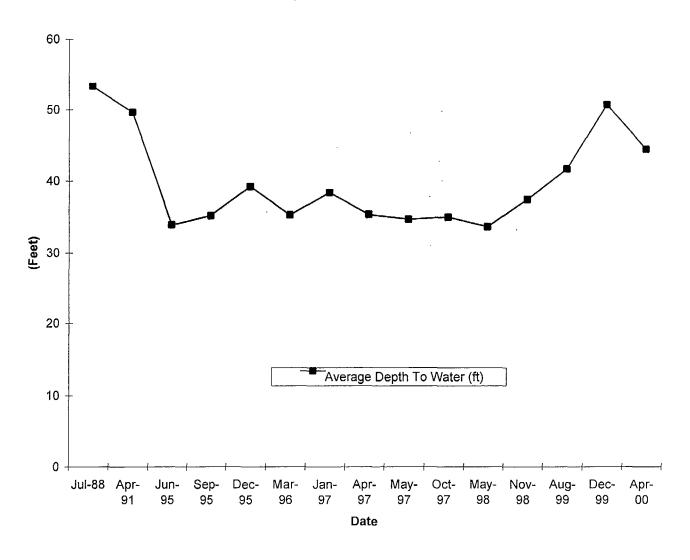
⁶ Bromodichloromethane and 1,1,2,2-Tetrachloroethane detected at 12 ppb and 11 ppb, respectively

⁷ Freon 113 detected at 3.1 ppb

⁸ Methylene Chloride detected at 10 ppb

or cis-1,2 DCE detected at 1.0 ppb (Apr-97) and 1.6 ppb (Aug-99)

Methylene Chloride detected at 29 ppb


Methylene Chloride detected at 17 ppb

Methylene Chloride detected at 7.5 ppb ¹³ cis-1,2 DCE detected at 23 ppb ¹⁴ Duplicate of MW-2

¹⁵ Duplicate of MW-4

¹⁶ cis-1,2 DCE detected at 1.5 ppb (Dec-99)

Average Depth to Groundwater

Page 1

TABLE 1
SOIL SAMPLE RESULTS
Pilot Chemical Comapny

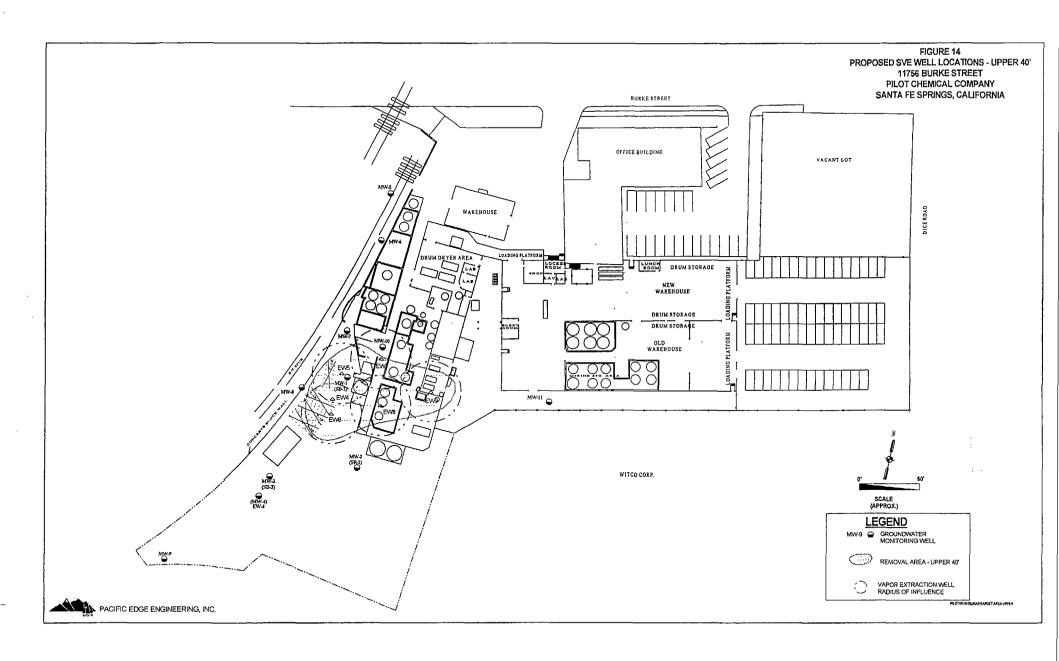
Soil Sample Location	Depth (ft)	1,2 DCA	Benzene	E. Benzene	Xylenes	Toluene
SB-1	60	NA	(<0.04)	(<0.04)	(<0.03)	0.06
SB-3	60	NA	(<0.04)	0.57	2.7	4.2
SB-4	60	NA	(<0.04)	100	480	220
	10	NA	(<0.005)	(<0.005)	(<0.010)	(<0.005)
	20	NA	(<0.005)	(<0.005)	(<0.010)	0.008
MW-5	30	NA	(<0.005)	(<0.005)	(<0.010)	(<0.005)
	40	NA	(<0.005)	(<0.005)	(<0.010)	(<0.005)
	50	NA	(<0.005)	(<0.005)	(<0.010)	(<0.005)
	10	NA	(<0.005)	(<0.005)	(<0.010)	(<0.005)
•	20	NA	(<0.005)	(<0.005)	(<0.005)	0.01
MW-6	30	NA	(<0.005)	(<0.005)	(<0.005)	0.013
	40	NA	(<0.005)	(<0.005)	0.015	0.009
	50	NA	(<0.005)	(<0.005)	(<0.005)	0.01
	10	NA	(<0.005)	1.8	10	1.1
	20	NA	(<0.005)	(<0.005)	0.043	0.043
MW-7	30	NA	(<0.005)	0.05	0.213	0.102
:	40	NA	(<0.005)	2.2	8.3	6
	50	NA	(<0.005)	0.008	0.03	0.014
	10	NA	(<0.005)	(<0.005)	(<0.01)	0.01
	20	NA	(<0.005)	(<0.005)	0.011	0.011
MW-8	30	NA	(<0.005)	0.013	0.06	0.026
	40	NA	(<0.63)	33	86	63
	50	NA	(<0.63)	300	1,000	400
	10	NA	(<0.005)	(<0.005)	(<0.01)	0.009
	20	NA	(<0.005)	(<0.005)	(<0.01)	0.01
MW-9	30	NA	(<0.005)	(<0.005)	(<0.01)	0.01
	40	NA	(<0.005)	(<0.005)	(<0.01)	0.01
	50	NA	(<0.005)	(<0.005)	0.02	0.01
	10	NA	(<0.005)	0.057	0.24	0.688
	20	NA	(<0.005)	0.007	0.03	0.043
MW-10	30	NA	(<0.005)	0.007	0.03	0.032
	40	NA	(<0.005)	0.042	0.19	0.352
	50	NA	(<1.3)	1.4	5.4	13.9
	10	NA	(<0.005)	(<0.005)	(<0.01)	(<0.005)
	20	NA	(<0.005)	(<0.005)	(<0.01)	0.0072
MW-11	30	NA	(<0.005)	(<0.005)	(<0.01)	(<0.005)
	40	NA	(<0.005)	(<0.005)	(<0.01)	(<0.005)
	50	NA	(<0.005)	(<0.005)	(<0.01)	(<0.005)

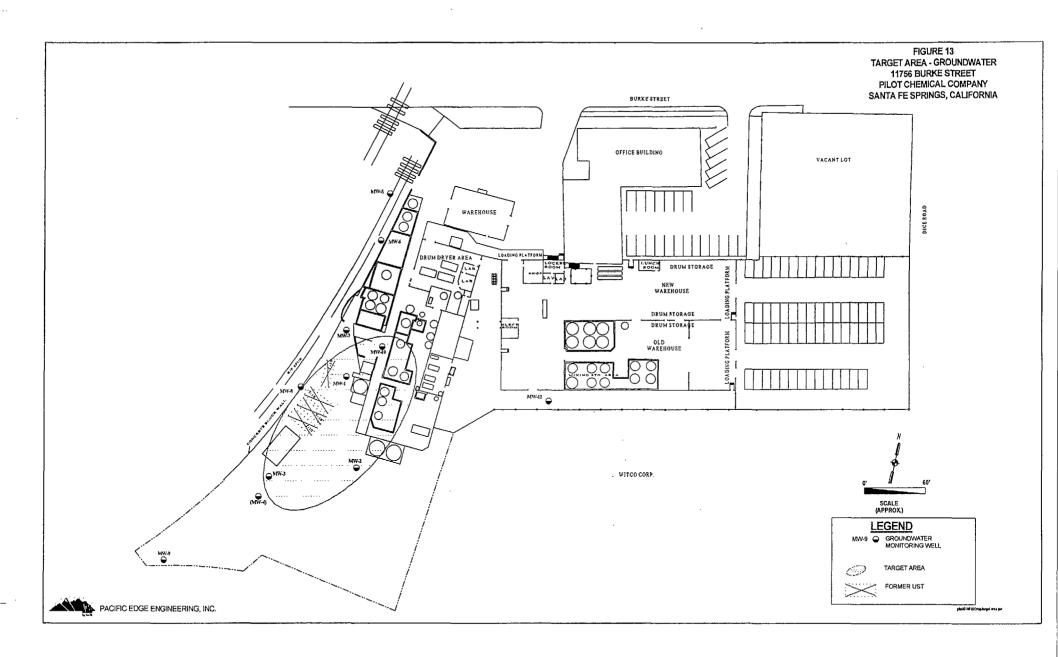
TABLE 1
SOIL SAMPLE RESULTS
Pilot Chemical Comapny

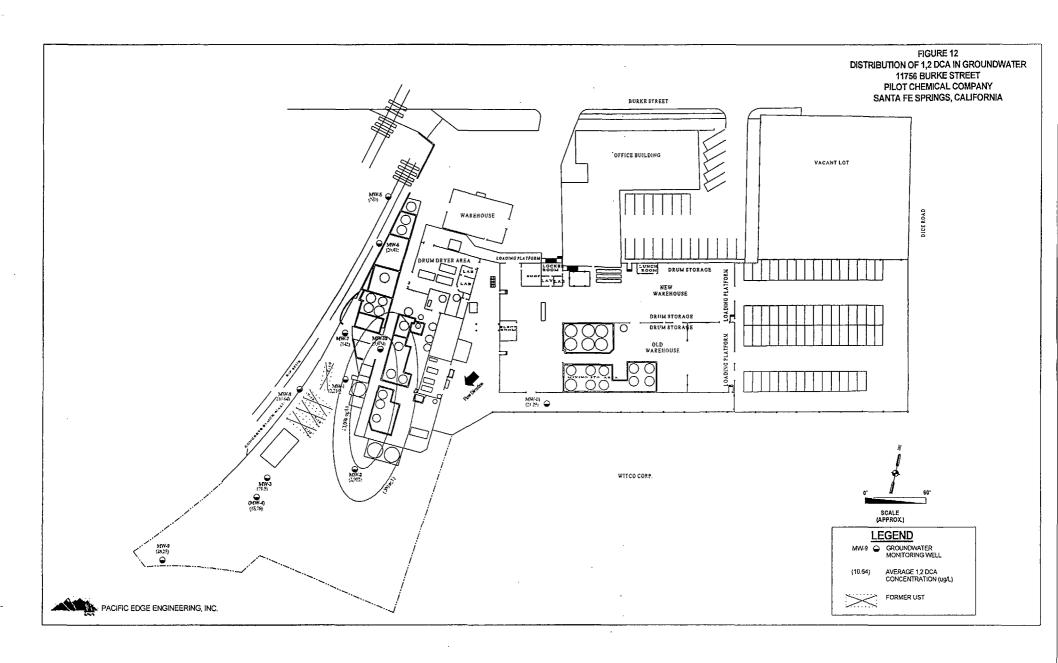
Soil Sample Location	Depth (ft)	1,2 DCA	Benzene	E. Benzene	Xylenes	Toluene
	2	0.828	0.1	30	80	50
B1	5	(<0.01)	0.02	0.67	4.8	0.67
	10	(<0.01)	(<0.005)	200	1,220	250
	2	NA	0.3	100	280	265
B2	5	NA	(<0.005)	20	95	16
	9.3	NA	(<0.005)	3,400	15,200	3,720
	2	NA	(<0.005)	(<0.005)	(<0.015)	(<0.005)
В3	5	NA	(<0.005)	(<0.005)	(<0.015)	(<0.005)
	7.8	NA	0.07	0.37	2.5	1.3
	2	40.39	(<0.005)	2.5	1	1.1
В6	5	1.14	(<0.005)	30	90	5
	10	NA	(<0.005)	3,610	10,900	1,110
	6	NA	(<0.10)	0.15	0.92	2.6
	16	NA	(<0.10)	0.042	0.44	0.12
	26	(<0.01)	(<0.10)	0.0024	0.175	0.064
SB-5	36	(<0.01)	(<0.10)	2.2	12.7	5.3
	41	NA	(<5.0)	25	126	48
•	51	NA	(<50)	240	1,220	430
	6	NA	(<0.50)	0.58	4.79	6.2
	16	NA	(<0.10)	0.32	2.67	1.6
	21	NA	(<0.10)	0.58	3.87	1.7
SB-6	36	NA	(<1,000)	780	5500	1,400
	46	NA	(<1.0)	1.8	8.2	12
•	56	NA	(<1,000)	1,700	12,000	3,800
	6	NA	(<1.0)	4.9	64	(<1.0)
	16	NA	(<0.05)	0.061	0.466	0.068
	26	NA	0.14	0.11	0.82	0.24
SB-7	31	NA	(<5.0)	10	64.2	6.8
	41	NA	(<1,000)	2,600	9,200	10,000
	51	NA	(<100)	140	852	180
	11	NA	(<0.010)	0.017	0.15	0.024
	16	NA ·	(<0.010)	0.085	0.483	0.12
	26	NA	(<0.5)	0.64	3.61	1.4
SB-8	36	NA	(<0.5)	1.7	5.8	6.6
	41	NA	(<1,000)	1,700	5,380	3,300
	51	NA	(<50)	360	1,180	640
	10.5	NA	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	20.5	NA	(<0.005)	(<0.005)	(<0.005)	(<0.005)
SB-9	30.5	NA	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	40.5	NA	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	50.5	NA	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	11.5	NA	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	21	NA	(<0.005)	(<0.005)	(<0.005)	(<0.005)
SB-10	30.5	NA	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	39.5	NA	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	50.5	NA	(<0.02)	160	810	390

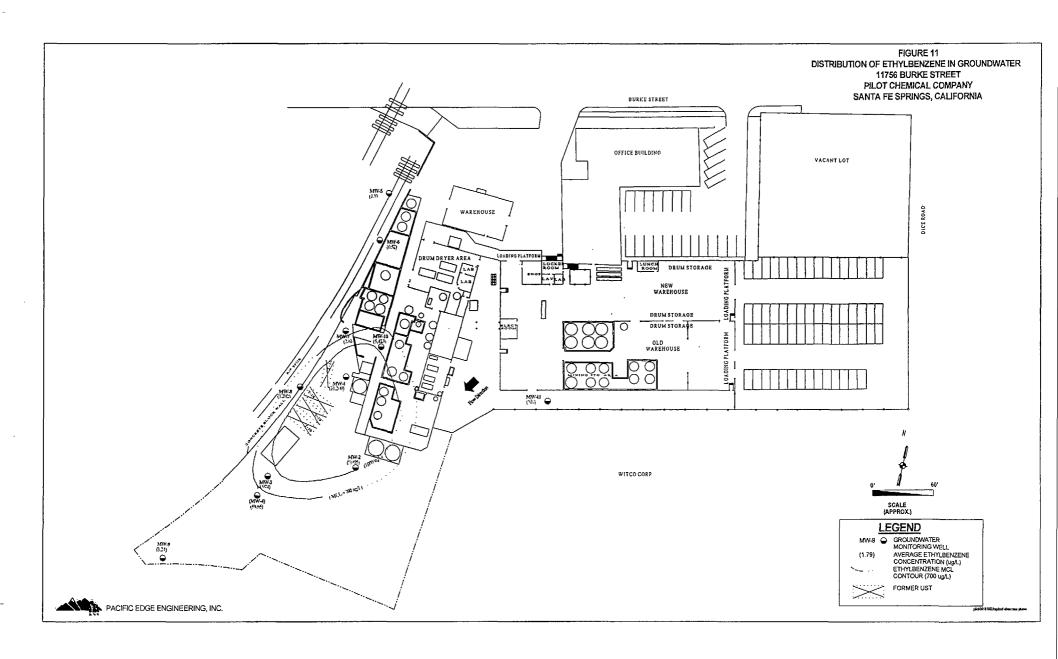
TABLE 1
SOIL SAMPLE RESULTS
Pilot Chemical Comapny

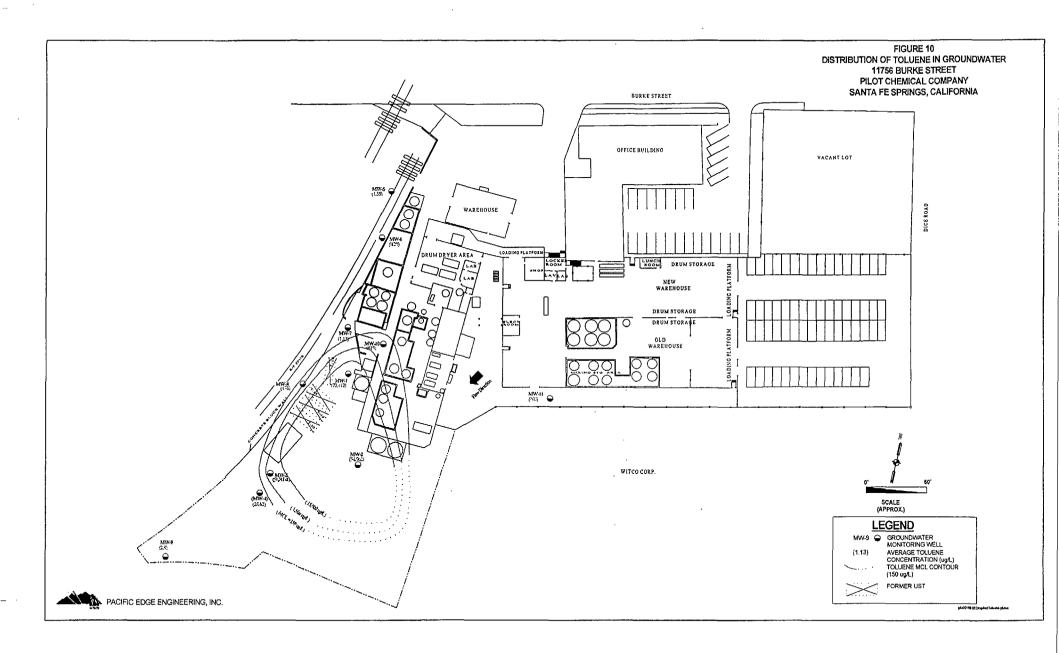
Soil Sample Location	Depth (ft)	1,2 DCA	Benzene	E. Benzene	Xylenes	Toluene
	11	NA	0.007	(<0.005)	(<0.005)	(<0.005)
SB-11	21	NA	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	30	NA	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	40.5	NA	(<0.005)	0.19	0.1	(<0.005)
	50	NA	(<0.005)	0.19	0.63	0.64
	6	NA	(<0.01)	0.01	(<0.03)	(<0.01)
	16	NA	(<1,000)	900	6,820	3,100
	26	NA	(<5.0)	59	316	77
EW-3	36	NA	(<50)	420	2,780	2,900
	46	NA	(<5.0)	73	264	160
	56	NA	(<0.10)	0.8	3.97	7.6
	6	NA	(<100)	540	4,420	250
	11	NA	(<50)	1,000	6,740	1,100
	21	NA	(<100)	750	5,110	540
EW-4	31	NA	(<50)	430	1,870	310
	41	NA	(<50)	430	1,520	560
	51	NA	(<5.0)	13	48.9	29
	5	0.0516	· NA	NA	NA	NA
Hand Auger	10	0.234	NA	NA	NA	NA
	13	0.498	NA	NA	NA	NA
	1	(<2.5)	(<2.5)	16	190	(<2.5)
	10	(<0.5)	(<0.5)	(<0.5)	1.9	(<0.5)
	20	(<0.005)	(<0.005)	(<0.005)	0.0098	(<0.005)
GP-1	30	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	40	(<0.5)	(<0.5)	(<0.5)	(<0.5)	(<0.5)
	50	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	1	(<0.5)	(<0.5)	7.6	46	0.95
GP-2	10	(<0.005).	(<0.005)	0.0071	0.024	0.0095
	20	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	30	(<0.005)	(<0.005)	(<0.005)	0.012	(<0.005)
	40	(<0.5)	(<0.5)	(<0.5)	(<0.5)	(<0.5)
	50	(<0.5)	(<0.5)	(<0.5)	(<0.5)	(<0.5)
GP-3	1	(<500)	(<500)	1,200	8,600	(<500)
	10	(<120)	(<120)	1,800	8,100	(<120)
	20	(<10)	(<10)	150	677	37
	30	(<10)	(<10)	160	783	60
	40	(<0.5)	(<0.5)	(<0.5)	0.9	1.1
	50	(<0.5)	(<0.5)	(<0.5)	(<0.5)	(<0.5)

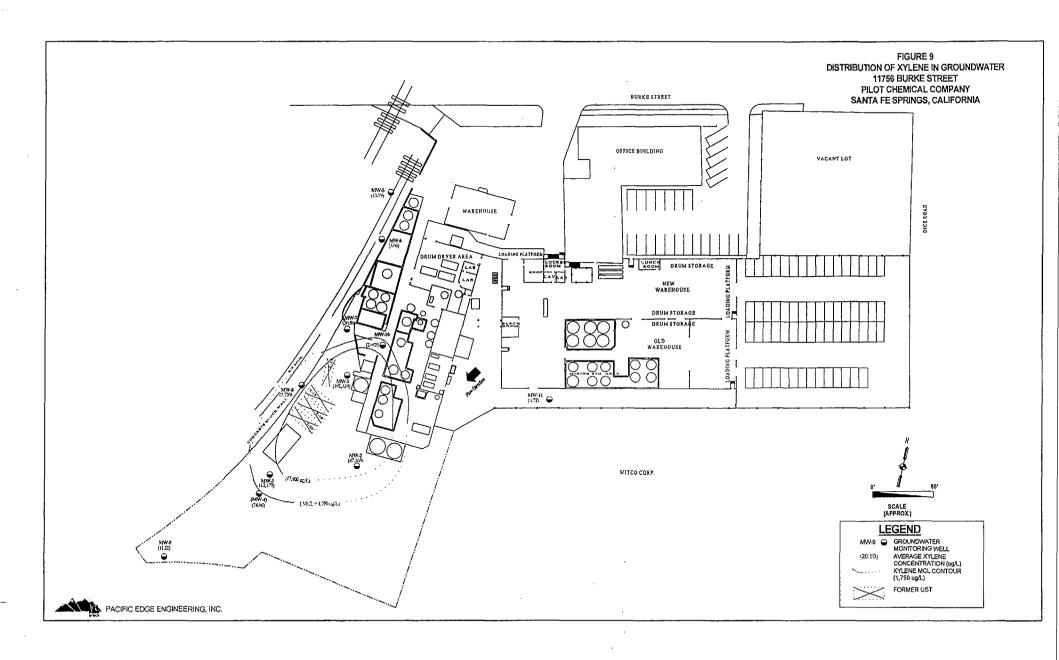

TABLE 1
SOIL SAMPLE RESULTS
Pilot Chemical Comapny

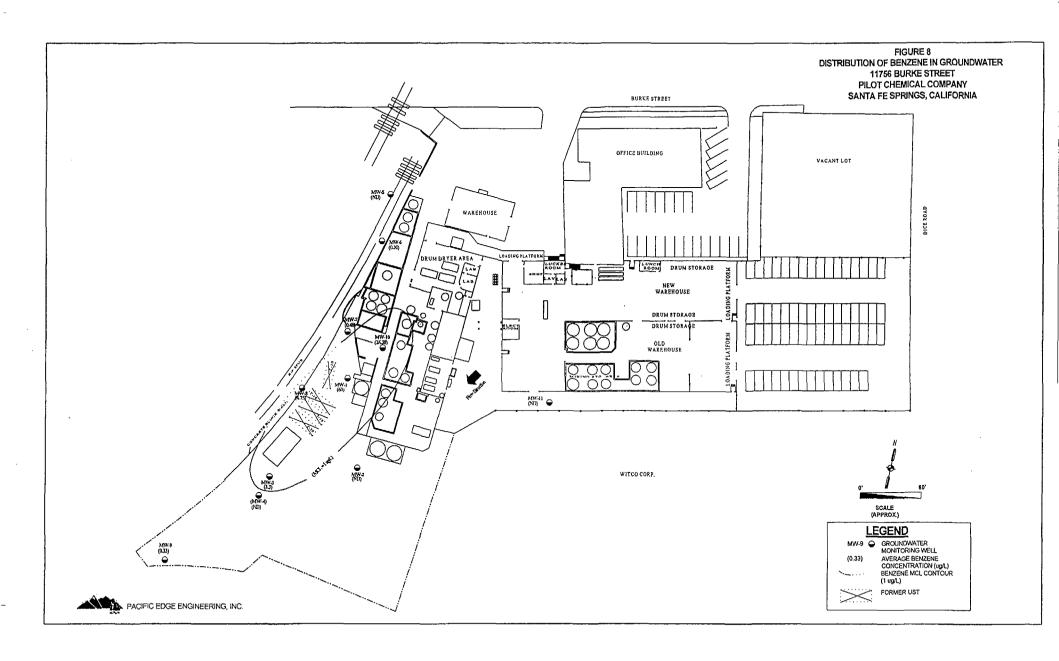

Soil Sample Location	Depth (ft)	1,2 DCA	Benzene	E. Benzene	Xylenes	Toluene
	1	(<25)	(<25)	110	429	47
	10	(<0.5)	(<0.5)	0.86	5.59	0.6
	20	(<0.005)	(<0.005)	0.0073	0.036	0.026
GP-4	30	(<0.025)	(<0.025)	0.16	0.94	0.18
	40	(<0.5)	(<0.5)	(<0.5)	(<0.5)	(<0.5)
	50	(<25)	(<25)	170	590	(<25)
	1	(<0.005)	(<0.005)	(<0.005)	0.0249	0.0064
	10	(<10)	(<10)	29	228	58
	20	(<0.5)	(<0.5)	(<0.5)	2.9	(<0.5)
GP-5	30	(<0.5)	(<0.5)	1.2	6.4	4.4
	40	(<0.5)	(<0.5)	(<0.5)	0.68	(<0.5)
	50	(<2.5)	(<2.5)	36	151	80
	1	1	(<0.5)	2	11.7	8.8
	10	(<2.5)	(<2.5)	3.8	23	59
	20	(<0.005)	(<0.005)	(<0.005)	(<0.005)	0.0067
GP-6	30	(<0.005).	(<0.005)	(<0.005)	0.011	0.0053
	40	(<0.5)	(<0.5).	(<0.5)	(<0.5)	(<0.5)
	50	(<0.5)	(<0.5)	(<0.5) ·	(<0.5)	(<0.5)
	1	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	10	(<0.005)	(<0.005)	0.043	0.258	0.026
	20	(<0.025)	(<0.025)	0.13	1.16	0.095
GP-7	30	(<0.005)	(<0.005)	0.0076	0.0543	0.0076
	40	0.033	(<0.025)	0.38	1.28	0.89
	50	(<0.5)	(<0.5)	1.1	3.92	(<0.5)
	1	(<0.5)	(<0.5)	(<0.5)	(<0.5)	(<0.5)
	10	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	20	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
GP-8	30	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	40	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	50	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	1	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	10	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	20	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
GP-9	30	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	40	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	50	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	1	(<0.005)	(<0.005)	(<0.005)	0.013	0.0086
	10	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	20	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
GP-10	30	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	40	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)
	50	(<0.005)	(<0.005)	(<0.005)	(<0.005)	(<0.005)

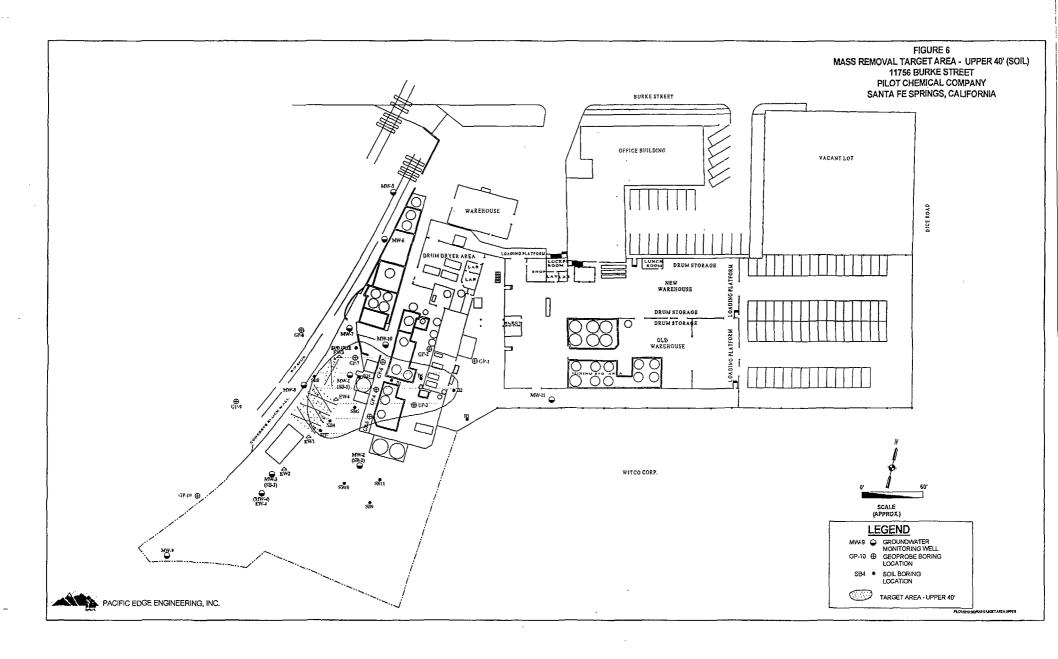

Table 18 **Soil Vapor Extraction and Observation Test Wells**

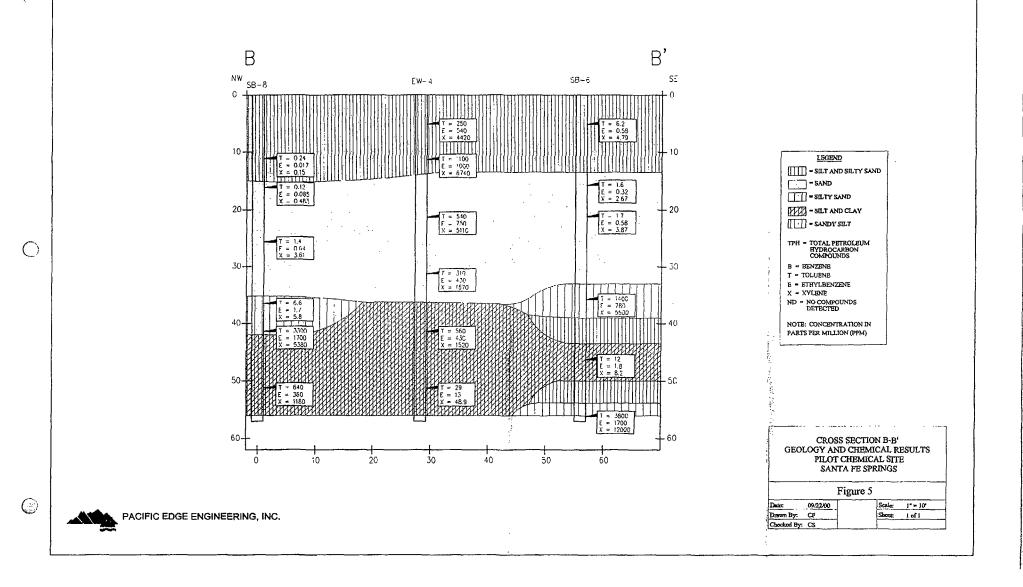

Soil Unit	Extraction Well	Depth (feet bgs)	Screened Interval (feet)	Observation Wells
Upper Soil Unit	EW4 ¹	35	5 to 35	EW1 ¹ EW6 ²
Lower Soil Unit	EW9 ²	55	40 to 55	EW11 ² EW12 ²

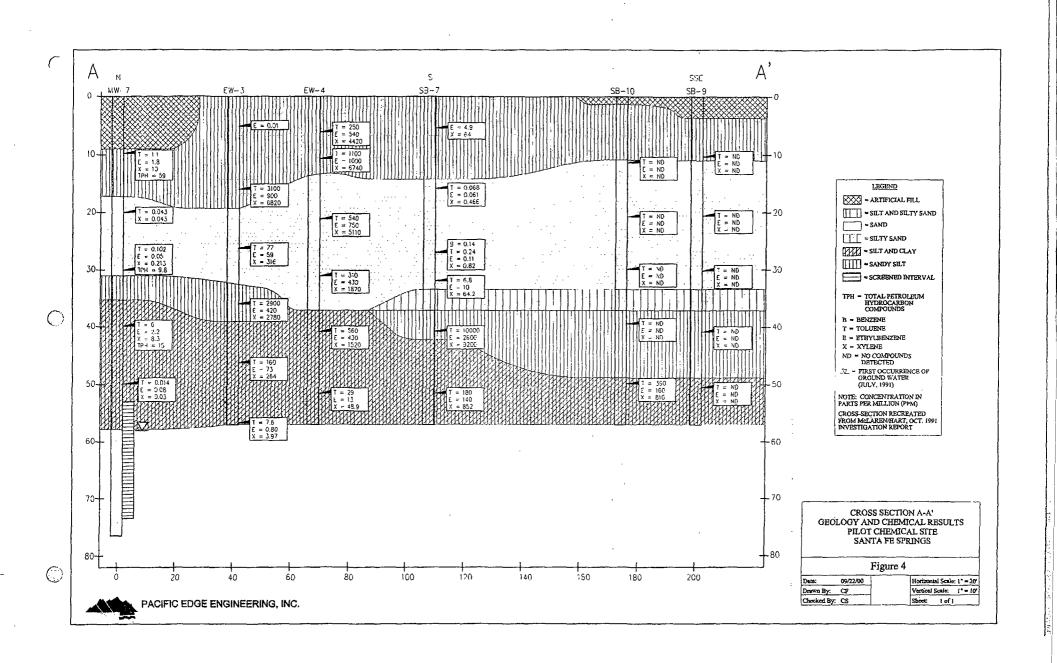

Notes
(1) existing vapor extraction well
(2) proposed vapor extraction well

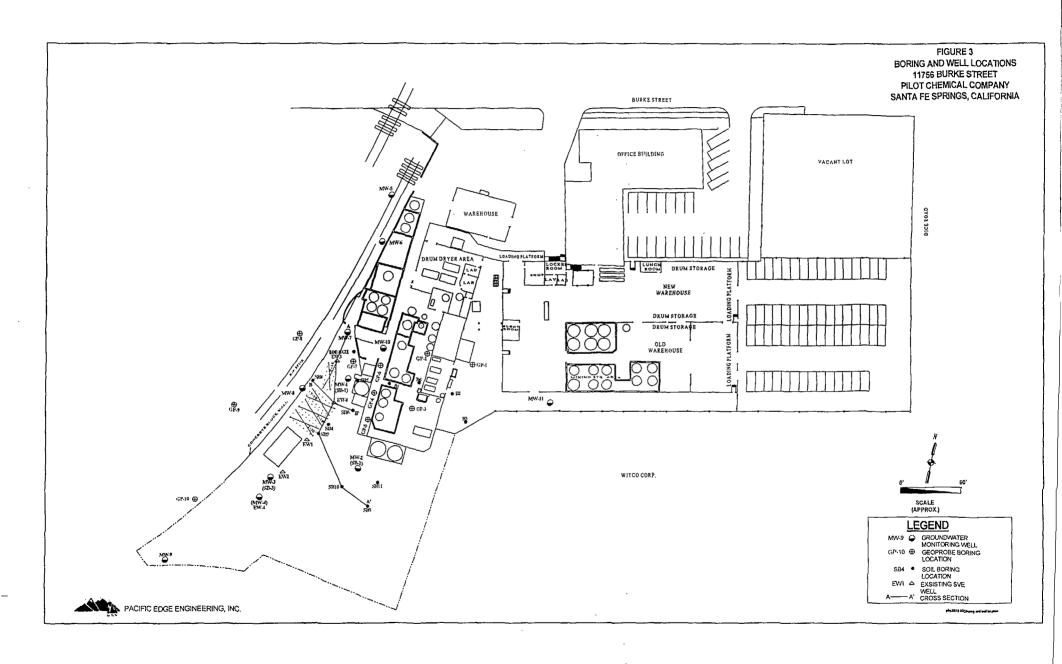












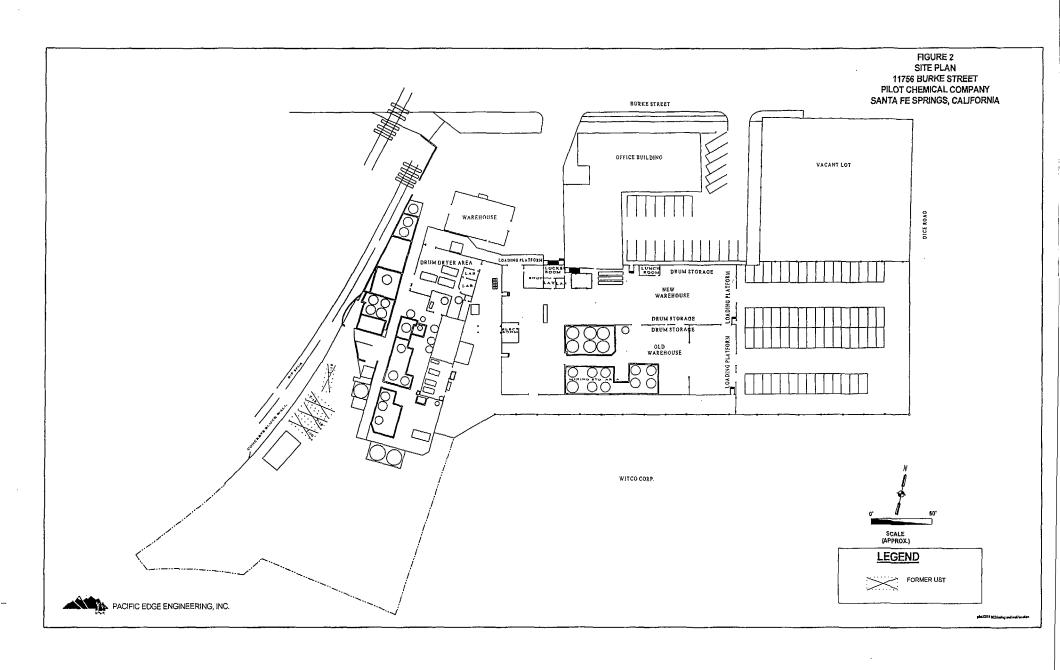
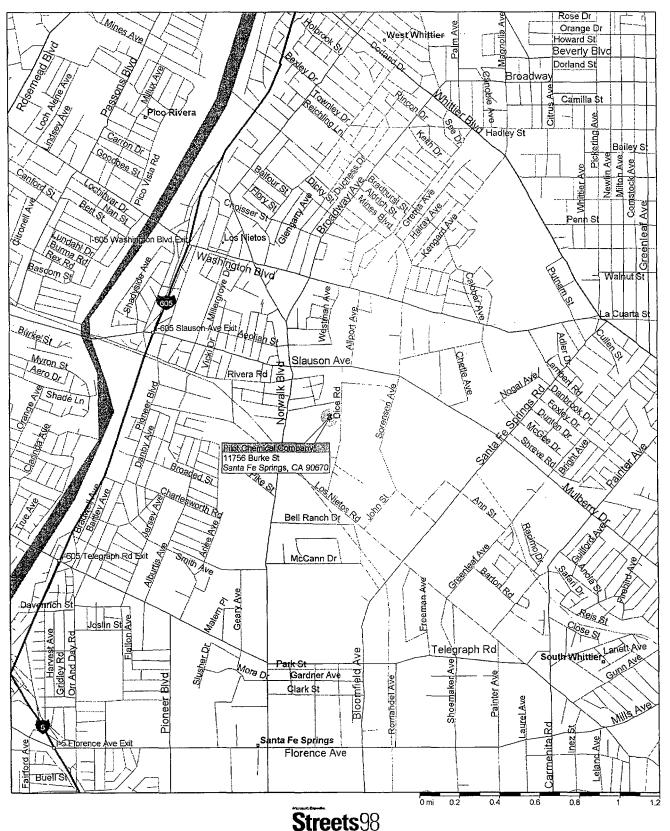
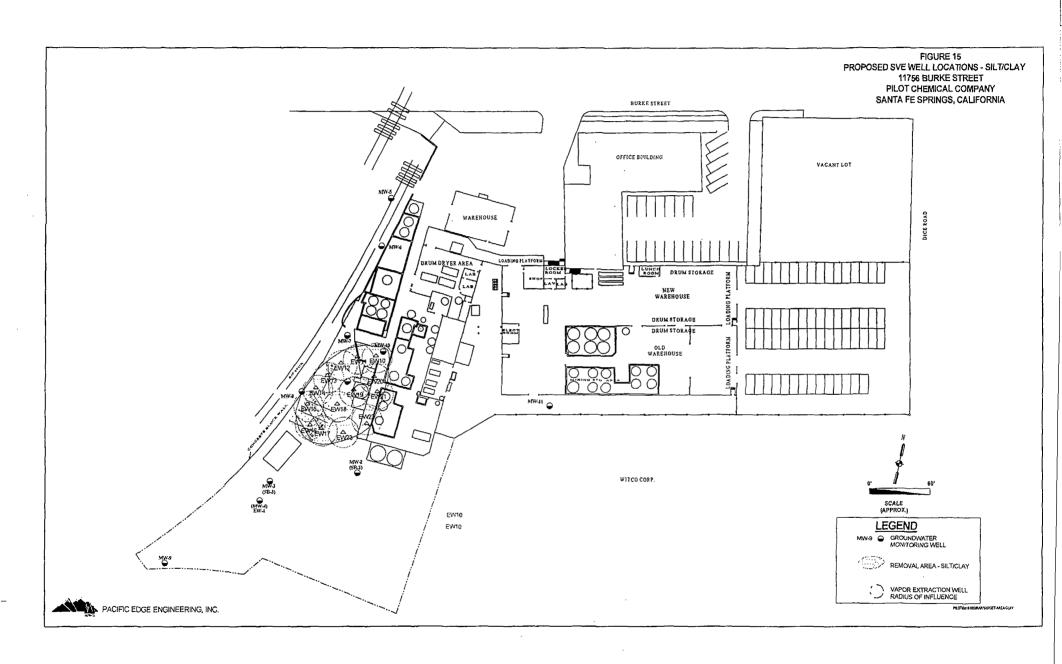
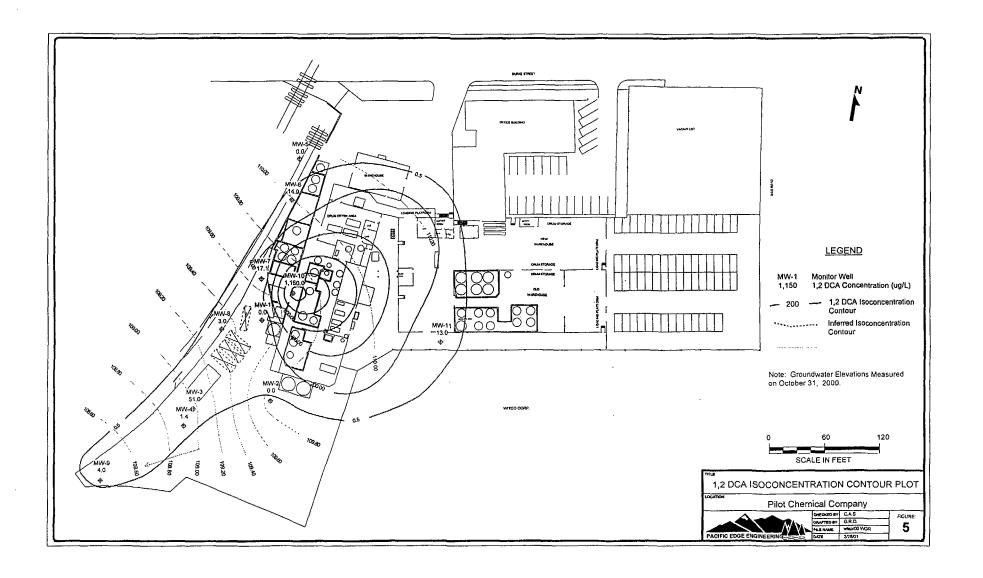





Figure 1
Site Location Map

Steven Hariri
California Regional Water Quality Control Board
Los Angeles Region
320 West Fourth Street, Suite 200
Los Angeles, California 90013

RE: REVISED REMEDIAL ACTION PLAN, PILOT CHEMICAL COMPANY, 11756 BURKE STREET, SANTA FE SPRINGS, CALIFORNIA (SLIC NO. 383)

Dear Mr. Hariri:

Pacific Edge Engineering, Inc. (Pacific Edge), on behalf of Pilot Chemical Company, is submitting the following revisions to the Revised Remedial Action Plan (RAP) dated October 2000 for the above referenced site. These revisions are based on your review comments presented to Pacific Edge at our January 24, 2001 meeting.

Off-Site Sources for Groundwater Contamination

Several contaminants present in groundwater beneath the Pilot Chemical Company site (Site) are believed to be from off-site sources, as evidenced by ten years of groundwater monitoring at the Site and no current or historical use of these contaminants at the Site. These contaminants are:

- ➤ 1,1-Dichloroethane (1,1 DCA)
- > 1,1-Dichloroethene (1,1 DCE)
- > Tetrachloroethene (PCE)
- Carbon Tetrachloride
- Chloroform
- > Trichloroethene (TCE)

It is our understanding that the Site is located within an area of regional groundwater contamination. In an effort to identify potential off-site groundwater contaminant source(s), Pacific Edge intends to conduct a database search of published government agency records that list properties near the Site that generate hazardous waste, manage hazardous materials, or have reported chemical releases. Based on the database search, pertinent agency files will be reviewed for nearby sites that are considered a potential off-site source. A letter summarizing the database search and file review findings will be provided to the RWQCB.

Workplans

Per our meeting, you indicated that the RWQCB's Remedial Action Plan (RAP) approval letter will state that the following workplans must be submitted for review and approval:

1. soil vapor extraction pilot test

N:\P\Pilot\0019.002,001\RAP\Text\rap text3rev.doc

Steven Hariri February 28, 2001 Page 2

- 2. in-situ chemical oxidation pilot test
- 3. full-scale in-situ chemical oxidation
- 4. long-term natural attenuation monitoring

These workplans will be prepared and submitted to the RWQCB prior to implementing any of the above activities. In addition, a Waste Discharge Requirement (WDR) application will be submitted and the necessary permits obtained prior to implementing the pilot test and full-scale operation for in-situ chemical oxidation.

Soil Cleanup Goals

The table below presents the soil cleanup goals (C) based on the revised attenuation factors discussed at our meeting.

Distance Above Groundwater (ft)	Depth Below Surface	Benzene	Toluene	Ethylbenzene	Xylenes	1,2 DCA
	(ft)	mcl=0.001 ppm	mcl≈0.15 ppm	mcl≃0,7 ppm	mcl=1.75 ppm	mcl=0,0005 ppm
		C (ppm)	C (ppm)	C (ppm)	C (ppm)	C (ppm)
55	0	0.061	3.059	11.706	31.959	0.0090
50.	. 5	0.052	2.491	9.448	25.751	0.0074
45	10	0.043	1.923	7.189	19.543	0.0058
40	15	0.034	1.355	4.930	13.335	0.0042
35	20	0.030	1.204	4.401	11.887	0.0036
30	25	0.026	1.054	3.873	10.439	0.0031
25	30	0.022	0.903	3.344	8.991	0.0026
20	35	0.018	0.753	2.815	7.543	0.0021
15 .	40	0.013	0.602	2.286	6.094	0.0016
10	45	0.009	0.451	1.758	4.646	0.0011
5	50	0.005	0.301	1.229	3.198	0.0008
0	55	0.001	0.150	0.700	1.750	0.0005

The above cleanup goals do not impact the upper sandy unit cleanup area depicted on Figure 6 of the October 2000 RAP. A revised Figure 7 reflecting the cleanup area in the lower clayey zone is attached.

Sample Analysis

The October 2000 RAP included the analysis of volatile organic compounds (VOCs) by EPA Method 8020. The VOCs analysis is hereby revised to EPA Method 8021B and MTBE verification by EPA Method 8260B.

1,2 DCA Isoconcentration

Attached is Figure 5 from the October 2000 semi-annual groundwater sampling report. This figure presents a 1,2 DCA isoconcentration contour plot in groundwater and has been revised to include the MCL contour for 1,2 DCA.

N:\P\Pilot\0019.002.001\RAP\Text\rap text3rev.doc

Steven Hariri February 28, 2001 Page 3

If you have any questions or comments, please call me at (949) 470 –1937.

Sincerely,

Craig A. Stolz, P.E. Principal Engineer

Attachments: Figures 5 and 7

Cc:

Dave Nusser - Pilot Chemical Company

January 23, 2008

Elizabeth Erickson AEG Regional Water Quality Control Board–Los Angeles 320 West 4th Street, Suite 200 Los Angeles, California 90013

RE: Semi-Annual Groundwater Monitoring & Soil Remediation Progress Report, Pilot Chemical Company, SLIC No. 383

Dear Ms. Erickson:

On behalf of Pilot Chemical Company, Pacific Edge Engineering, Inc. (Pacific Edge) is providing the attached semi-annual groundwater monitoring and soil remediation progress report for the site located at 11756 Burke Street, Santa Fe Springs, California. This semi-annual report is for the second event in 2007.

The next sampling event is scheduled for April 2008. If you have any questions, please call me at (949) 470-1937.

Sincerely

Craig A. Stolz, P.E.

Principal Engineer

Cc: Matthew Leary-Pilot Chemical Company

Semi-Annual Groundwater Monitoring & Soil Remediation Progress Report

October, 2007 (SLIC NO. 383)

Pilot Chemical Company 11756 Burke Street Santa Fe Springs, California

Date:

December 2007

Prepared for:

Pilot Chemical Company

11756 Burke Street

Santa Fe Springs, California

Prepared by:

Pacific Edge Engineering, Inc.

26691 Plaza, Suite 230

Mission Viejo, California 92691

TABLE OF CONTENTS

Section	<u>n</u>	Page
PROFI	ESSIONAL CERTIFICATION	m
1.0	EXECUTIVE SUMMARY	1
1.1 1.2	Groundwater Monitoring & Sampling Soil Remediation	
2.0	INTRODUCTION	2
2.1	Background	2
3.0	GROUNDWATER MONITORING	3
<i>3.</i> 3.	GROUNDWATER ELEVATION AND FLOW DIRECTION GROUNDWATER SAMPLING SAMPLE RESULTS. 3.1 Methyl Blue Active Substances (MBAS) – EPA Method 425.1 3.2 HVOCs – EPA Method 601 3.3 VOCs – EPA Method 602 3.4 Total Petroleum Hydrocarbons as diesel – LUFT Method. CONCLUSION SOIL VAPOR EXTRACTION SVE SYSTEM DESCRIPTION SVE OPERATION. CONTAMINANT REMOVAL ESTIMATE PLANNED REMEDIATION	3 4 4 4 5 6 6 7 7
	TABLES	
Table Table :	2 Historical Groundwater Analytical Results	
	FIGURES	
Figure Figure Figure Figure Figure	 Site Plan Groundwater Flow Direction 1,2 Dichloroethane Distribution in Groundwater Total Xylene Distribution in Groundwater 	
	GRAPHS	
Graph Graph Graph	2 Cumulative Pounds VOC Removed by Extraction Well	report

(949) 470-1937; (949) 470-0943 (FAX)

report_text.doc

TABLE OF CONTENTS (cont.)

APPENDICES

ii

Groundwater Sampling Protocol and Field Notes
Laboratory Reports, Quality Control Reports, Chain-Of Custody
SCAQMD SVE Permit
SVE Laboratory Reports
SVE Operational Logs

PROFESSIONAL CERTIFICATION

Pacific Edge Engineering, Inc., under the professional supervision of Craig A. Stolz, has prepared this report. The findings, conclusions, specifications, and/or professional opinions presented in this report have been prepared in accordance with generally accepted professional engineering practice, and within the scope of the project. There is no other warranty, either expressed or implied.

Craig A. Stolz
P.E. No. C049756
Principal Engineer
Pacific Edge Engineering, Inc.

1.0 EXECUTIVE SUMMARY

This report presents the results of the October 2007 (semi-annual) groundwater monitoring event and the status of ongoing soil remediation at the Pilot Chemical Company, 11756 Burke Street, Santa Fe Springs, California (the Site).

1.1 GROUNDWATER MONITORING & SAMPLING

Eleven (11) on-site groundwater monitoring wells are sampled and the water elevation measured on a semi-annual basis at the Site. The purpose of this sampling and monitoring event is to update groundwater quality data and verify the direction of groundwater flow direction at the facility.

The October 2007 data indicate that the groundwater flow direction is consistent with previous sampling events. Detected chemical concentrations are generally consistent with previous sampling events.

The next semi-annual sampling event is planned for April 2008.

1.2 SOIL REMEDIATION

A soil vapor extraction (SVE) system was installed at the Site and began operation on January 24, 2006. SVE operation and remediation progress is summarized in the semi-annual groundwater monitoring reports, starting with the August 2006 event. This report documents operation of the SVE system from July 11, 2007 through December 11, 2007. During this period the SVE did not operate from August 9th through December 6th due to replacement of the liquid ring pump.

Since startup the SVE system has been operated to focus on the removal of 1, 2-dichloroethane (DCA) within the remediation target area. DCA in soil is collocated within the significantly larger toluene, ethylbenzene, and total xylenes (TEX) contamination area. The objective is to remediate the smaller DCA mass using activated carbon for vapor treatment. Once the DCA plume has been remediated, soil remediation will focus on the larger and more significant mass of TEX. It is anticipated that a

thermal/catalytic oxidizer will be a more efficient vapor control alternative for the TEX contamination.

During the current reporting period an estimated 120 pounds of contaminants (DCA and TEX) were removed from the subsurface. The total mass of contaminants removed since startup is estimated to be 2,302 pounds and of the total approximately 42.6 pounds is attributed to DCA.

2.0 INTRODUCTION

This report presents the results of the October 2007 (semi-annual) groundwater monitoring event and soil remediation from July 11, 2007 through December 11, 2007. Figure 1 presents the Site location.

2.1 BACKGROUND

The Site is approximately 4.3 acres in size. The Site borders Burke Street on the north, Dice Road on the east, and industrial facilities on the west and south. A residential area is located northwest of the site. The site is used to manufacture detergent for industrial purposes and utilizes aboveground tanks and formerly used underground tanks as part of their operations. Aboveground tanks are located on the western portion of the site within containment areas and within the Old Warehouse, also within containment areas. The former underground storage tanks were used to store toluene, xylenes, and caustic materials. These tanks were located at the western portion of the property and were removed during the late 1980's.

Following the removal of the underground storage tanks, several soil and groundwater investigations were conducted at the Site. A summary of these investigations is presented in the approved RAP for the Site (dated October 2000, and revised February 28, 2001).

Toluene, ethylbenzene, total xylenes (TEX), and 1, 2-DCA (DCA) are the primary soil and groundwater contaminants at the Site. The former USTs have been identified as the source of the TEX contaminants. DCA has been detected in shallow soil in a localized area just east of the former USTs. DCA soil contamination is presumed to be from minor spill(s) associated with the removal of a former aboveground tank used to store DCA. DCA in soil is collocated within the significantly larger TEX soil contamination mass.

2

3.0 GROUNDWATER MONITORING

Quarterly and/or semi-annual groundwater monitoring has been conducted at the Site since April 1991. Figure 2 presents the facility site plan, which includes all groundwater monitor well locations.

3.1 GROUNDWATER ELEVATION AND FLOW DIRECTION

On October 29, 2007 static water levels were measured in the eleven monitoring wells located at the Site using an electronic water interface probe. The depth to groundwater and groundwater elevation data from June 1995 through October 2007 are presented in Table 1 to provide the historic trend in water level.

During the October 2007 event the groundwater elevation ranged from 96.67 feet above mean sea level (MSL) in downgraident well MW-9 to 99.37 feet MSL in well MW-11. The groundwater elevation measured at MW-4 was not consistent with historic readings relative to the other wells and is therefore considered erroneous for this monitoring event. Monitor well MW-4 elevation data was not included in evaluation of groundwater flow direction or overall groundwater elevation for this monitoring event. The groundwater levels have generally decreased approximately 9.27 feet since the last event in April 2007, reflecting drought conditions being experienced in Southern California.

Using the data presented in Table 1, a groundwater elevation contour map was plotted for the October 2007 event and is provided as Figure 3. The groundwater flow direction is to the south-southwest. The groundwater gradient is approximately 0.0066 feet per foot. The groundwater flow direction and gradient during this event are generally consistent with those of previous events.

3.2 GROUNDWATER SAMPLING

On October 29 and October 30, 2007, groundwater samples were collected from the eleven monitoring wells at the facility. Samples were obtained using a Waterra Inertial Pump and dedicated poly tubing. Summaries of Pacific Edge's standard groundwater

sampling protocols and field notes for this sampling event are provided as Appendix A. All groundwater samples were analyzed for the following compounds:

- > Halogenated Volatile Organic Compounds (HVOCs) using EPA Method 601
- Aromatic Volatile Compounds (VOCs) using EPA Method 602
- ➤ Surfactants MBAS using EPA Method 425.1
- Total Petroleum Hydrocarbons diesel range (TPHd) by DHS LUFT Method.
- > pH using EPA Method 150.1

A duplicate sample (DUP-1 collected from MW-8) was submitted to the laboratory for analysis of HVOCs and VOCs using EPA Methods 601 and 602.

3.3 SAMPLE RESULTS

Copies of the chain-of-custody forms and laboratory analytical reports are provided as Appendix B. Laboratory results for this and previous events are summarized in Table 2.

3.3.1 Methyl Blue Active Substances (MBAS) – EPA Method 425.1

MBAS is an indicator of surfactants. During the October 2007 event, MBAS was detected in all eleven wells. Detected MBAS concentrations at the Site ranged from 0. 4 milligrams per liter (mg/L) in MW-8 to 8.73 mg/L in MW-1. Detected MBAS concentrations are generally consistent with historical results for the Site.

3.3.2 HVOCs – EPA Method 601

Eight (8) HVOCs were detected in groundwater during this sampling event and include:

> 1,1-dichloroethane (1, 1-DCA) was only detected in well MW-9, and at a concentrations of 49.1 ug/L. 1, 1-DCA is typically detected in MW-9 and on occasion detected in MW-11. The detected concentration in MW-9 for this event is consistent with past events.

- 1, 1-dichloroethene (1, 1-DCE) was detected in wells MW-9 and MW-11 at concentrations of 3.1 ug/L and 1.8 ug/L, respectively. Historically, 1,1-DCE has been detected in these wells at similar concentrations.
- Tetrachloroethane (PCE) was detected in MW-4, MW-5, MW-6, MW-7, MW-8, and MW-11 at concentrations of 0.7 ug/L, 4 ug/L, 7.1 ug/L, 0.9 ug/L, 1 ug/L, and 18.7 ug/L, respectively. Historically, PCE has been detected in these wells at similar concentrations.
- Carbon Tetrachloride was detected in MW-5, MW-6, and MW-8 at concentrations of 78 ug/L, 23.6 ug/L, and 3 ug/L, respectively. The highest carbon tetrachloride concentrations were detected in upgradient wells MW-5 and MW-6.
- Chloroform is typically detected in most wells at the Site, with periodic non-detection in some wells. During the October 2007 event, Chloroform was detected at concentrations from 0.9 ug/L in MW-7 to 41 in upgradient well MW-5 ug/L.
- > 1,2-DCA (DCA) was detected in all wells, with the exception of upgradient well MW-5 and well MW-3. Detected concentrations ranged from 1.1 ug/L in MW-4 to 5,000 ug/L in MW-10. These results are generally consistent with historical data. Figure 4 presents the distribution of DCA in groundwater during this sampling event.
- Trichloroethene (TCE) was detected in MW-4, MW-6, MW-7, MW-8, MW-9, and MW-11 at concentrations of 1.5 ug/L, 2 ug/L, 1.8 ug/L, 1.4 ug/L, 206 ug/L, and 3.1 ug/L, respectively.
- Cis-1,2 DCE was detected in MW-9 at concentration of 5.8 ug/L. Cis-1,2 DCE is periodically detected in this well at a similar concentration.

3.3.3 **VOCs – EPA Method 602**

VOCs detected in groundwater during this sampling event include:

- Ethylbenzene was detected in MW-1, MW-2, and MW-3 at concentrations of 16,100 ug/L, 7,000 ug/L, and 4,250 ug/L, respectively. These results are generally consistent with historical data.
- Toluene was detected in MW-1, MW-2, and MW-3 at concentrations of 57,100 ug/L, 45,000 ug/L, and 8,900 ug/L, respectively. These concentrations are generally consistent with historical data.
- Total xylenes were detected in seven of the eleven wells sampled. Total xylene concentrations ranged from 6 ug/L in upgradient well MW-5 to 93,600 ug/L in MW-1. Figure 5 presents the distribution of total xylenes in groundwater during this sampling event.

3.3.4 Total Petroleum Hydrocarbons as diesel – LUFT Method

Total petroleum hydrocarbons (as diesel) is occasionally detected at low concentrations in some wells. During the October 2007 event, TPH as diesel was detected at a concentration of 0.73 mg/L in well MW-1.

3.4 CONCLUSION

The groundwater flow direction for the October 2007 event is consistent with previous sampling events. Detected chemical concentrations are generally consistent with previous sampling events. The next groundwater sampling event is scheduled for April 2008.

4.1 SVE SYSTEM DESCRIPTION

A full scale SVE system was installed at the Site and consists of a 25 horsepower liquid ring pump capable of 250 standard cubic feet per minute (scfm) and can operate up to a vacuum of 25-inches of mercury. Extracted vapors are routed through a 120-gallon air/water separator and treated using two canisters connected in series, each filled with 2,000 pounds of granular activated carbon. The system also includes a heat exchanger used to cool down the vapor stream prior to treatment by the carbon canisters. A total of 11 vapor extraction wells are installed at the Site. The extraction wells are manifolded and routed to the SVE system via aboveground PVC piping. The following Table summarizes the SVE well construction details. SVE well locations are depicted on Figure 6.

EXTRACTION WELL SUMMARY

75 27 27 27 27 27 27 27 27	SVE	Dare :	Well Diameter	Total Depth	Screened Interval
Soil Unit	Well LD:	: Installed:	(inches)	(feet bgs)	(ft)
Upper ¹	VS1	October 22, 2002	2	37	7 to 37
Upper ¹	VS2	October 22, 2002	2	37	7 to 37
Upper ¹	EW3	September 1991	4	35	5 to 35
Upper ¹	EW4	September 1991	4	35	5 to 35
Lower ²	VD1	October 22, 2002	2	55	35 to 55
Lower ²	VD2	October 22, 2002	2	55	35 to 55
Lower ²	VD3	October 22, 2002	2	55	35 to 55
Lower ²	VD4	August 15, 2005	2	56.5	36 to 56
Lower ²	VD5	August 15, 2005	2	56.5	36 to 56
Lower ²	VD6	August 16, 2005	2	56.5	36 to 56
Lower ²	VD7	August 16, 2005	2	56.5	36 to 56

7

¹ upper soil unit - sandy, sandy/silt soils

² lower soil unit – silt, clayey/silt soils

4.2 SVE OPERATION

The following provides an operational summary for the SVE system:

OPERATIONAL SUMMARY

Citizat	
Equipment Information:	Bisco, Model 250 High Vac Carbon
	System
Discharge Permit Information:	SCAQMD Permit No. F79822
	Expiration Date: NONE
	Discharge Limits: 13.6 ppmv (TOC)
	0.45 ppmv (benzene)
Current Reporting Period:	Hours of Operation: 696 hours
July 10, 2007 – December 11, 2007	Total Pounds of VOCs Removed: 120
Since System Startup:	Total Hours of Operation: 10,500
January 24, 2006 – December 11, 2007	Total Pounds of VOCs Removed: 2,302

Vapor concentrations are measured during Operation and Maintenance (O&M) visits which correspond to the frequency set by the permit conditions (Appendix C). Beginning on March 30, 2007, Pilot Chemical personnel began operating and monitoring the system on a daily basis. During this reporting period, remediation continued to focus on the removal of 1,2-DCA. As a result, VES wells VS1 and VS2 were the primary extraction wells. From August 9th through December 6th, the SVE system did not operate because the liquid ring pump was being reconditioned.

Weekly visits are conducted by Pacific Edge to optimize system operating parameters, and collect monthly samples for laboratory analysis per permit requirements. Vapor measurements are made by Pilot Chemical using a flame ionization detector (FID) calibrated to read in parts per million as hexane. All samples collected for FID measurements or laboratory analysis are collected in Tedlar bags using a vacuum pump attached to the appropriate sample port. FID measurements are also made at extraction wells and periodically samples from the extraction wells are submitted to the laboratory

for analysis. Copies of laboratory analytical reports for samples analyzed during this reporting period are provided as Appendix D.

Operational data is monitored during each O&M visit and recorded on logs kept at the Site. Copies of the logs for this reporting period are provided as Appendix E.

4.3 CONTAMINANT REMOVAL ESTIMATE

The table below summarizes the length of time each well has been operated and the estimated pounds of contaminants extracted from each well.

CONTAMINANT REMOVAL ESTIMATE

Well	Elapsed Time	Total	DCA Mass	Total DCA	VOCs Mass	Total VOCs.
I.D.	-Reporting	Elapsed	Removed-	Removed	Removed -	Mass
	Period (days) ^A	Time (days) ^B	Reporting Period	(lbs) ^D	Reporting Period	Removed
			(168) ^C		(lbs) ^E	(lbs) ^F
VS1	0	194.1	. 0	5.23	0	599.99
VS2	29	352.7	2.85	36.99	120.1	1,284.21
EW3	0	18.4	0	0	0	65.41
EW4	0	10.97	0	0	0	82.46
VD1	0	6.0	0 .	0	0	50.36
VD2	0	8.1	0	0	0	82.46
VD3	0	27.0	0	0.2	0	69.92
VD4	0	5.8	0	0	0	12.21
VD5	0	1.9	0	0	0	2.53
VD6	0	28.9	0	0.15	0	50.29
VD7	0	2.1	0	0.03	0	2.17

Wells in bold indicate that DCA has been detected in extracted vapors.

- A number of days operated during July 10, 2007 through December 11, 2007 reporting period.
- B total number of days operated since system start up on January 24, 2006
- C estimated total pounds of DCA removed during current reporting period.
- D estimated total pounds of DCA removed since system start up.
- E estimated total pounds of VOCs (including DCA) removed during current reporting period.
- F estimated total pounds of VOCs (including DCA) removed since system start up.

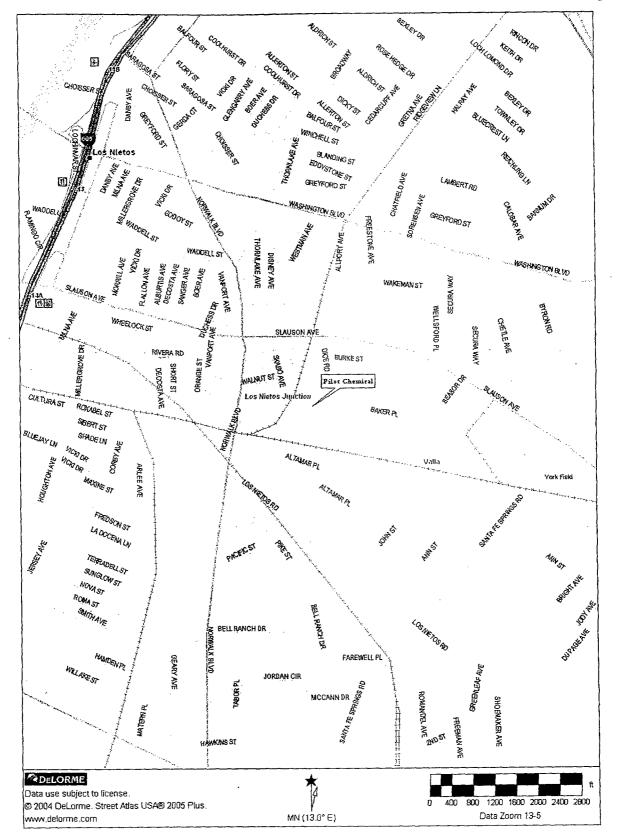
9

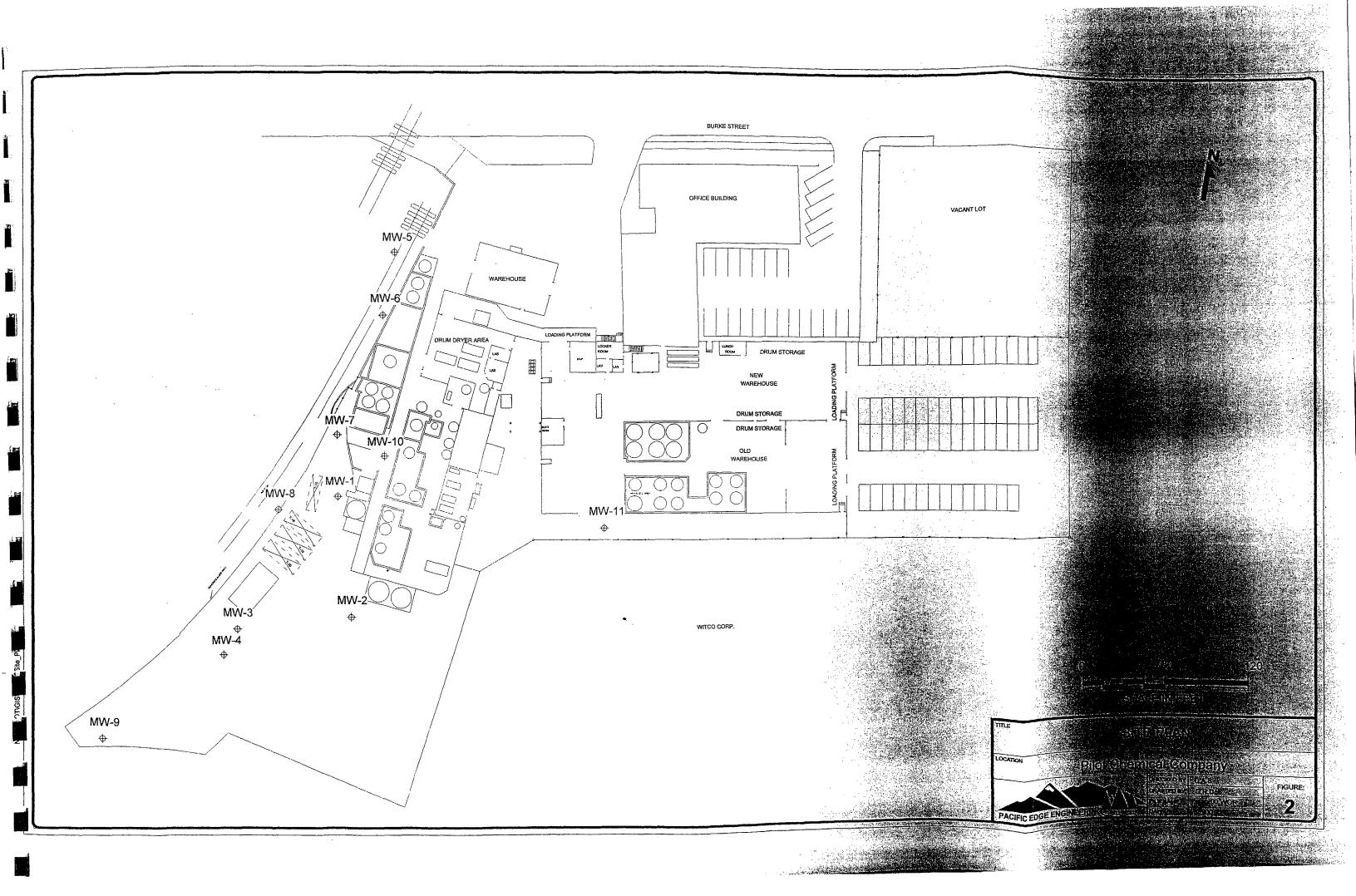
Operational data presented in Table 3 was used to estimate the pounds of Volatile Organic Compounds (VOCs) and DCA removed during the reporting period and the total pounds removed since system startup.

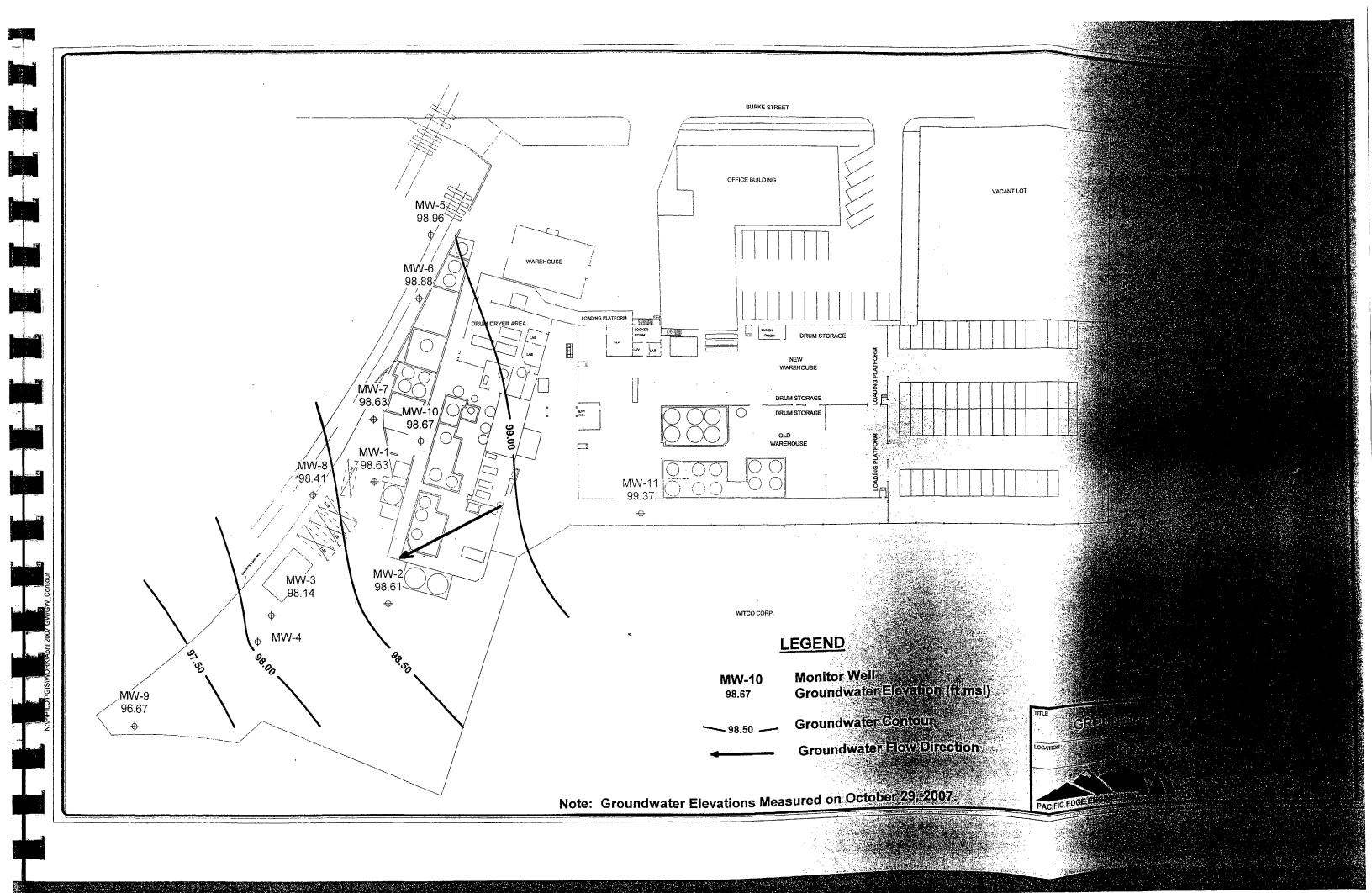
Graph 1 illustrates the total cumulative pounds of VOCs and DCA removed since system startup. Graph 2 presents the total pounds of VOCs removed by each extraction well since system startup. Graph 3 presents the total pounds of DCA removed by each extraction well since startup.

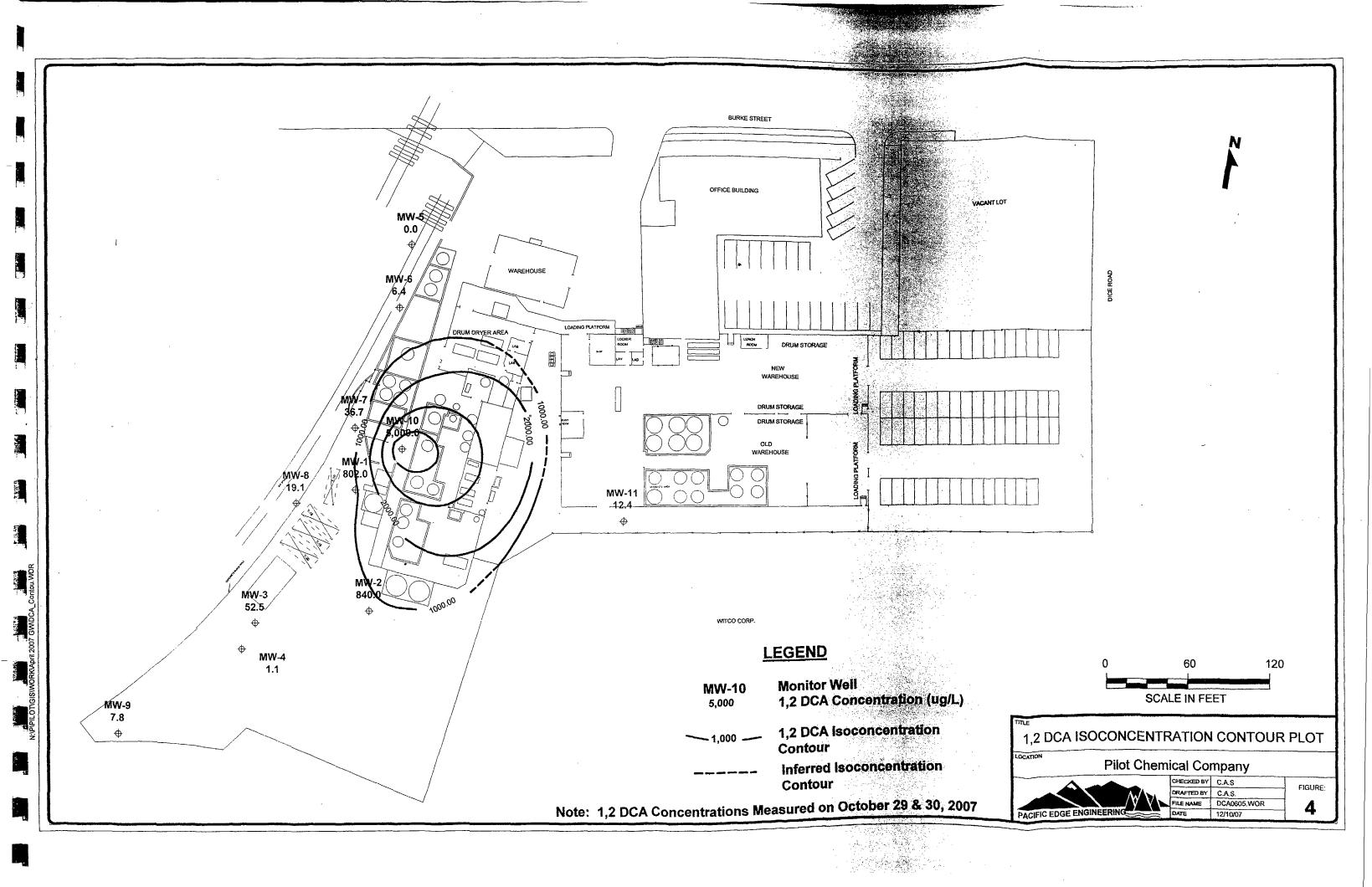
4.4 PLANNED REMEDIATION

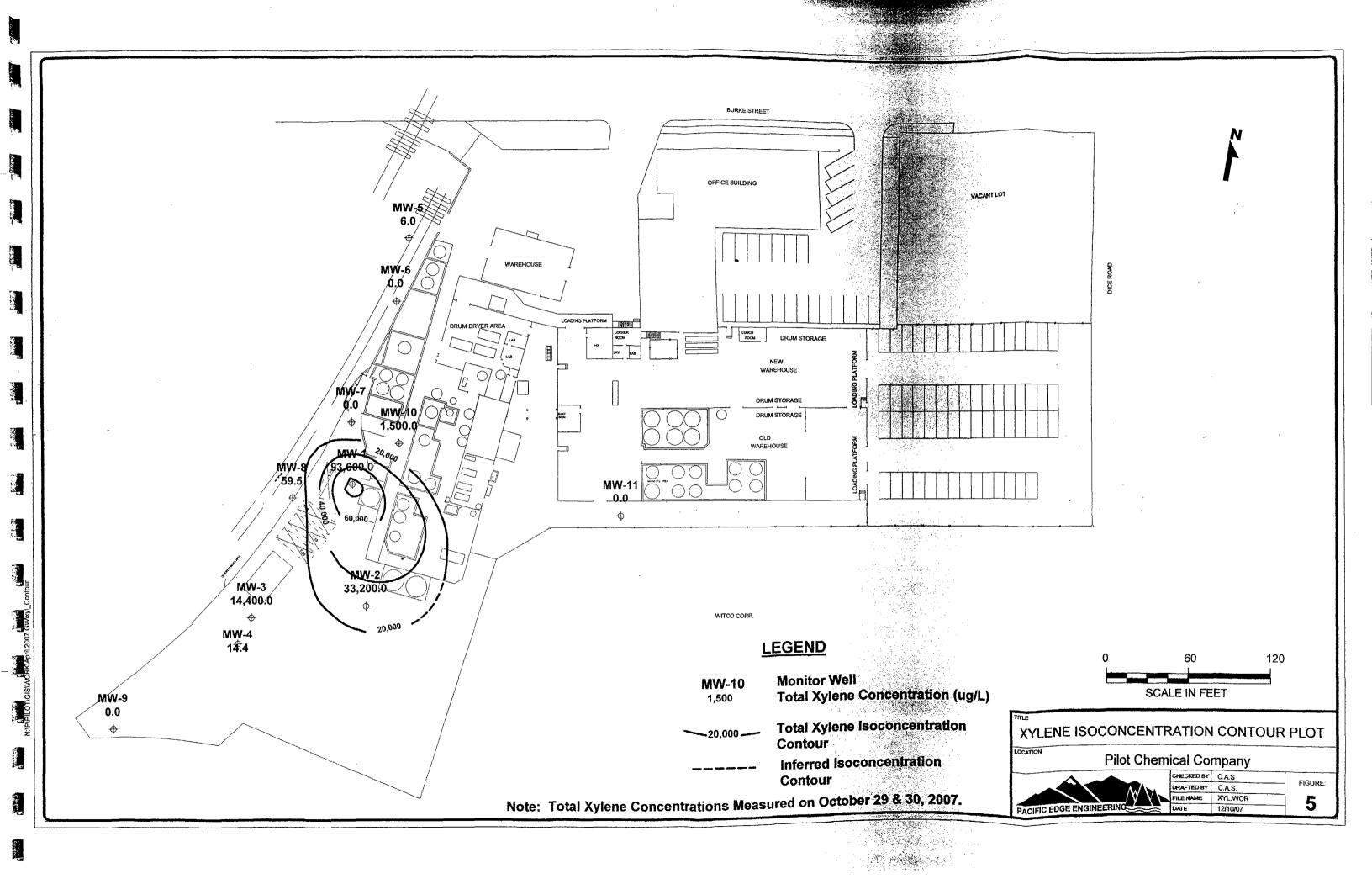
The SVE system will continue to operate and focus on DCA remediation. Anticipated wells to be operated during the next reporting period are VS1 and VS2. The remaining wells will be eliminated from further remediation until remediation efforts focus on TEX contamination.

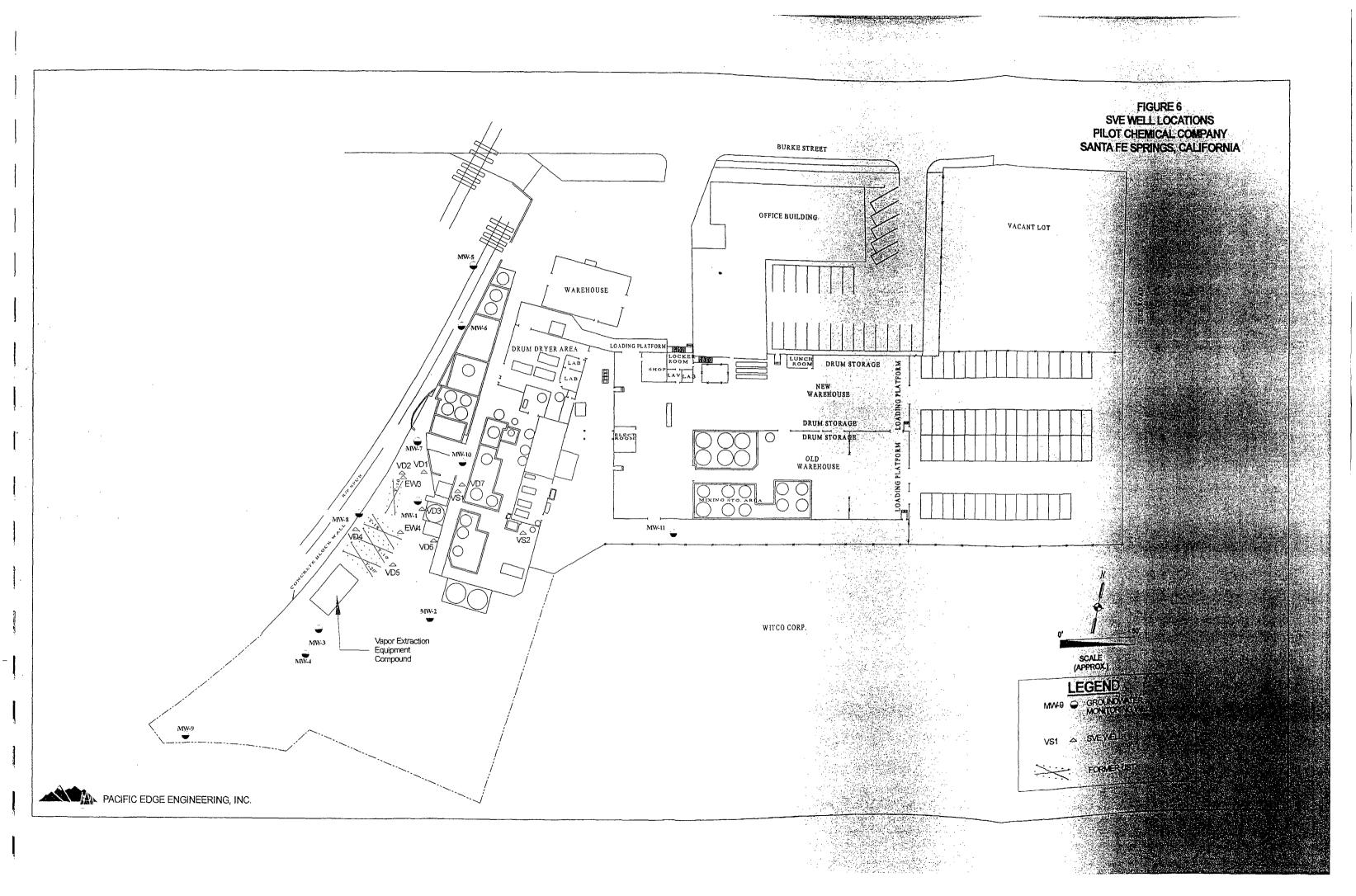

The next planned remediation progress report is scheduled for inclusion in the April 2008 Semi-Annual Groundwater Monitoring Report.


Figures


PACIFIC EDGE ENGINEERING (949) 470-1937; (949) 470-0943 (FAX)


report_text.doc


Figure 1
Site Location Map



		TPH	рН	MBAS	1,1-DCA	1.1-DCE	PCE	Carbon Tetrachloride	Chloroform	1,2 DCA	TCE	Benzene	Ethylbenzene	Toluene	Tat Xyle
onitoring Well	Date	(mg/L)	units	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/
	Apr-91		7.39	0.80			ĺ	NA 1	NA	NA	NA	ND 2 (2,500) 3	3,600	18,000	12,0
	Jan-94		7.0	0.90				ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	9,700	52,000	59,00
	Apr-94		7.5	6.0	ND (25)		ND (25)	ND (25)	68	910	ND (25)	ND (5,000)	29,000	220,000	130,0
	Jul-94		7.2	7.5	ND (20)		ND (20)	28	48	870	ND (20)	ND (5,000)	9,300	26,000	40,00
	Nov-94		NA	NA	NA.		NA	NA	NA	NA	NA	NA	NA	NA.	NA
	Jun-95	NA.	NA GO	NA	NA NA	110 (050)	NA NA	NA NA	NA NA	NA	NA	NA.	NA	NA	N.A
	Sep-95	15.0	7.0	60	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	4,200	ND (250)	ND (250)	48,000	56,000	319,0
	Dec-95	7.2	7.2	170	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	2,600	ND (50)	ND (5,000)	40,000	55,000	224,0
	Mar-96	16.0	7.1	29	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	3,200	ND (250)	ND (5,000)	58,000	85,000	282,
(Jan-97	15.0	6.95	72	ND (50)	ND (50)	ND (50)	ND (50)	51	3,700	ND (50)	ND (5,000)	34,000	96,000	200,0
	Apr-97	19.0	7.11	25	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	3,300	ND (50)	ND (5,000)	48,000	73,000	. 310,0
	Oct-97	6.5	6.85	33	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	3,700	ND (50)	52	23,000	65,000	110,
	May-98	7.9	7.01 7.1	18	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	2,200	ND (250)	ND (250)	35,000	110,000	200;
	Nov-98	ND (1.0)	7.1	400	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	2,700	ND (250)	ND (250)	47,000	44,000	340,
	Aug-99 Dec-99	ND(0.5) ND(0.5)	7.23	11.9 5.72	ND (25) ND (250)	ND (25) ND (250)	ND (25) ND (250)	ND (25) ND (250)	ND (25) ND (250)	760 700	ND (25)	68.	20,200	57,000	85,3
MW-1	Apr-00	ND(0.5)	7.00	6.22	ND (500)	ND (500)	ND (500)	ND (500)	736.0	670	ND (250)	ND (250)	19,800	71,000	96,9
	Oct-00	ND(0.5)	7.19	4.75	568.0	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500) ND (500)	ND (500)	22,600	71,300	116,
	Apr-01	ND(0.5)	7:23	4.40	ND (500)	ND (500)	ND (500)	ND (500)	2435	430J	ND (500)	ND (500)	23,100	77,500	74,1
	Oct-01	ND (0.5)	7.15	5.57	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (500)	15,800	51,100	51,3
	Apr-02	ND (0.5)	7.15	8.60	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (0.5) ND (500)	ND (0.5)	138,000	227,0 91,9
	Oct-02	ND (0.5)	7.06	9.70	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	500	ND (500)	ND (500)	16,900	56,100 84,800	129,
	Apr-03	ND (0.5)	7.06	36.70	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	24,200 15,300	52,300	84,4
	Oct-03	ND (0.5)	7.08	42.5	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	52,000	89,5
i	May-04	38.7	6.97	48.9	ND (1,250)		ND (1,250)	ND (1,250)	ND (1,250)	ND (1,250)	ND (1,250)	ND (1,250)	31,500	95,000	178,
	Oct-04	4.9	7.32	7.16	ND (200)	ND (200)	ND (200)	ND (200)	ND (200)	240	ND (200)	ND (200)	8,640	24,200	52,0
	Apr-05	1.0	7.13	7.13	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	1000	ND (250)	ND (250)	19,000	51,500	109,
	Nov-05	0.7	6.95	5.28	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	2400	ND (250)	195.0 J	15,600	65,000	105,
	May-06	0.9	N/A	2.40	ND (250)	ND (250)	ND (250)	ND (250)	84J	450	ND (250)	ND (250)	ND (250)	35,400	66,8
	Oct-06	ND (0.17)	7.17	4.03	ND (48)	ND (46)	ND (93)	ND (62)	161J	358J	ND (46)	ND (64)	11,900	40,300	69,5
	May-07	ND (0.17)	7.13	8.58	ND (24)	ND (23)	ND (46)	ND (31)	ND (31)	400	ND (23)	ND (32)	8,350	26,800	46,3
	Oct-07	0.73	7.03	8.73	ND (48)	ND (46)	ND (93)	ND (62)	ND (62)	802	60.1	ND (64)	16,100	57,100	93,6
	Apr-91		7.29	0.20				NA	NA	NA	NA -	ND (500)	970	7,500	4,00
	Jan-94		7.3	1.50				ND (130)	ND (130)	ND (130)	'ND (130)	ND (130)	590	1,700	3,50
	Apr-94		7.7	1.20	ND (5)		ND (5)	ND (5)	ND (5)	400 ⁴	ND (5)	ND (500)	12,000	29,000	47,6
	Jul-94		7.7	11	ND (20)		ND (20)	ND (20)	ND (20)	360	ND (20)	ND (250)	13,000	12,000	20,6
	Nov-94	i	6.7	0.68	ND (1,330)		ND (1,330)	ND (1,330)	ND (1,330)	1,600	ND (1,330)	ND (1,300)	9,300	73,000	44,0
			!		ND (50)		ND (50)	ND (50)	1,800	ND (50)	ND (50)	ND (5,000)	3,700	61,000	27,8
	1	ND (0.5)	7.2	1 6.70 1					1			(50)			
	Jun-95	ND (0.5) 0.70	7.2 7.1	6.70 11		ND (50)	ND (50)	ND (50)	ND (50)	2,300	ND (300)	ND (30)	2,300	29,000	. 12,0
	Jun-95 Sep-95	0.70	7.1	11	ND (50)	ND (50) ND (50)	ND (50) ND (50)	ND (50) ND (50)	ND (50) ND (50)	2,300 1,600	ND (500) ND (50)	ND (50) ND (500)		29,000 86,000	
·	Jun-95	, ,	ļ	1 1	ND (50) ND (50)	ND (50) ND (50) ND (50)	ND (50) ND (50) ND (50)	ND (50)	ND (50) ND (50) ND (50)	2,300 1,600 1,300	ND (50)		2,300 9,200 6,200		41,7
·	Jun-95 Sep-95 Dec-95 Mar-96	0.70 0.77 ND (0.5)	7.1 7.2 7.3	11 11	ND (50) ND (50) ND (50)	ND (50) ND (50)	ND (50) ND (50)	ND (50) ND (50)	ND (50) ND (50)	1,600 1,300	ND (50) ND (50)	ND (500)	9,200	86,000	41,7 22,4
·	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97	0.70 0.77 ND (0.5) 1.3	7.1 7.2 7.3 6.82	11 11 8.20 69	ND (50) ND (50) ND (50) ND (50)	ND (50) ND (50) ND (50)	ND (50) ND (50) ND (50)	ND (50) ND (50) ND (50)	ND (50) ND (50) ND (50)	1,600 1,300 4,400	ND (50) ND (50) ND (50)	ND (500) ND (500)	9,200 6,200 14,000 13,000	86,000 41,000	41,7 22,4 81,0
·	Jun-95 Sep-95 Dec-95 Mar-96	0.70 0.77 ND (0.5)	7.1 7.2 7.3	11 11 8.20	ND (50) ND (50) ND (50) ND (50) ND (50)	ND (50) ND (50) ND (50) ND (50)	ND (50) ND (50) ND (50) ND (50)	ND (50) ND (50) ND (50) ND (50)	ND (50) ND (50) ND (50) ND (50)	1,600 1,300	ND (50) ND (50)	ND (500) ND (500) ND (5,000)	9,200 6,200 14,000 13,000 15,000	86,000 41,000 140,000	41,7 22,4 81,0 87,0
·	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97	0.70 0.77 ND (0.5) 1.3 1.9 0.94	7.1 7.2 7.3 6.82 6.94	11 11 8.20 69 1.90 0.53	ND (50) ND (50) ND (50) ND (50) ND (50) ND (500)	ND (50) ND (50) ND (50) ND (50) ND (500)	ND (50) ND (50) ND (50) ND (50) ND (500)	ND (50) ND (50) ND (50) ND (50) ND (50)	ND (50) ND (50) ND (50) ND (50) ND (500)	1,600 1,300 4,400 3,900 5,500	ND (50) ND (50) ND (50) ND (50)	ND (500) ND (500) ND (5,000) ND (5,000)	9,200 6,200 14,000 13,000 15,000 6,100	86,000 41,000 140,000 140,000	41,7 22,4 81,0 87,0 63,0
·	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97 May-98	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43	7.1 7.2 7.3 6.82 6.94 6.70 7.03	11 8.20 69 1.90 0.53	ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500)	1,600 1,300 4,400 3,900 5,500 1,600	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500)	ND (500) ND (500) ND (5,000) ND (5,000) ND (500)	9,200 6,200 14,000 13,000 15,000	86,000 41,000 140,000 140,000 180,000	41,7 22,4 81,0 87,0 63,0 30,0
·	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97 May-98 Nov-98	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43 1.0	7.1 7.2 7.3 6.82 6.94 6.70 7.03 7.2	11 8.20 69 1.90 0.53 1.10	ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250)	1,600 1,300 4,400 3,900 5,500 1,600 1,900	ND (50) ND (50) ND (50) ND (50) ND (500)	ND (500) ND (500) ND (5,000) ND (5,000) ND (500) ND (500)	9,200 6,200 14,000 13,000 15,000 6,100 8,500 6,600	86,000 41,000 140,000 140,000 180,000 120,000 62,000 46,500	41,7 22,4 81,0 87,0 63,0 30,0 44,0
MW	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97 May-98 Nov-98 Aug-99	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43 1.0 ND (0.5)	7.1 7.2 7.3 6.82 6.94 6.70 7.03 7.2 6.97	11 8.20 69 1.90 0.53 1.10 38 13.8	ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (25)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (25)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (25)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (25)	1,600 1,300 4,400 3,900 5,500 1,600 1,900 2,500	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250)	ND (500) ND (500) ND (5,000) ND (5,000) ND (500) ND (500) ND (250)	9,200 6,200 14,000 13,000 15,000 6,100 8,500	86,000 41,000 140,000 140,000 180,000 120,000 62,000 46,500 39,300	41,7 22,4 81,0 87,0 63,0 30,0 44,0
MW-2	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97 May-98 Nov-98 Aug-99 Dec-99	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43 1.0 ND (0.5) ND (0.5)	7.1 7.2 7.3 6.82 6.94 6.70 7.03 7.2 6.97 7.10	11 8.20 69 1.90 0.53 1.10 38 13.8 1.75	ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (25) ND (50)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (25) ND (50)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (25) ND (50)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (25) ND (50)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (25) ND (50)	1,600 1,300 4,400 3,900 5,500 1,600 1,900 2,500 1,970	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (25) ND (50)	ND (500) ND (500) ND (5,000) ND (5,000) ND (500) ND (500) ND (250) ND (25)	9,200 6,200 14,000 13,000 15,000 6,100 8,500 6,600 5,260 4,300	86,000 41,000 140,000 140,000 180,000 120,000 62,000 46,500 39,300 31,900	41,7 22,4 81,6 87,6 63,6 30,6 44,6 28,7
MW-2	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97 May-98 Nov-98 Aug-99 Dec-99 Apr-00	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43 1.0 ND (0.5) ND (0.5)	7.1 7.2 7.3 6.82 6.94 6.70 7.03 7.2 6.97 7.10 7.14	11 8.20 69 1.90 0.53 1.10 38 13.8 1.75 2.79	ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (25) ND (50) ND (50)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (25) ND (50) ND (50)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (25) ND (50) ND (50)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (25) ND (50) ND (50)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (25) ND (50) ND (50)	1,600 1,300 4,400 3,900 5,500 1,600 1,900 2,500 1,970 1,450	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (25) ND (50) ND (50)	ND (500) ND (500) ND (5,000) ND (5,000) ND (500) ND (500) ND (250) ND (25) ND (50)	9,200 6,200 14,000 13,000 15,000 6,100 8,500 6,600 5,260 4,300	86,000 41,000 140,000 140,000 180,000 120,000 62,000 46,500 39,300 31,900 81,800	41,7 22,4 81,6 87,6 63,6 30,6 44,6 28,7 23,8
MW-2	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97 May-98 Nov-98 Aug-99 Dec-99 Apr-00 Oct-00	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43 1.0 ND (0.5) ND (0.5) ND (0.5) ND (0.5)	7.1 7.2 7.3 6.82 6.94 6.70 7.03 7.2 6.97 7.10 7.14 7.04	11 8.20 69 1.90 0.53 1.10 38 13.8 1.75 2.79	ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (25) ND (50) ND (50) ND (50)	ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (25) ND (50) ND (50) ND (50)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (25) ND (50) ND (50) ND (50) ND (50)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (25) ND (50) ND (50) ND (500)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (50)	1,600 1,300 4,400 3,900 5,500 1,600 1,900 2,500 1,970 1,450 ND (500)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (25) ND (50)	ND (500) ND (500) ND (5,000) ND (5,000) ND (500) ND (500) ND (250) ND (250) ND (25) ND (50) ND (50)	9,200 6,200 14,000 13,000 15,000 6,100 8,500 6,600 5,260 4,300 10,500 3,360	86,000 41,000 140,000 140,000 180,000 120,000 62,000 46,500 39,300 31,900 81,800 20,000	41,7 22,4 81,0 87,0 63,0 30,0 44,0 28,7 23,8 19,8 30,5
MW-2	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97 May-98 Nov-98 Aug-99 Dec-99 Apr-00 Oct-00 Apr-01	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43 1.0 ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	7.1 7.2 7.3 6.82 6.94 6.70 7.03 7.2 6.97 7.10 7.14 7.04 7.22	11 8.20 69 1.90 0.53 1.10 38 13.8 1.75 2.79 3.52 3.95	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (550) ND (550) ND (50) ND (50) ND (50) ND (50) ND (50) ND (50)	ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (25) ND (50) ND (50) ND (50) ND (500) ND (500)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (25) ND (50) ND (50) ND (50) ND (50) ND (50)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (25) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (500)	1,600 1,300 4,400 3,900 5,500 1,600 1,900 2,500 1,970 1,450 ND (500) 574	ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (25) ND (50) ND (50) ND (50)	ND (500) ND (500) ND (5,000) ND (5,000) ND (500) ND (500) ND (250) ND (250) ND (25) ND (50) ND (50) ND (50) ND (50) ND (50)	9,200 6,200 14,000 13,000 15,000 6,100 8,500 6,600 5,260 4,300 10,500 3,360 ND (0.5)	86,000 41,000 140,000 140,000 180,000 62,000 46,500 39,300 31,900 81,800 20,000	41,7 22,4 81,6 87,6 63,6 30,6 44,6 28,7 23,1 19,8 30,5 9,3
MW-2	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Oct-97 May-98 Nov-98 Aug-99 Dec-99 Apr-00 Oct-00 Apr-01 Oct-01	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43 1.0 ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	7.1 7.2 7.3 6.82 6.94 6.70 7.03 7.2 6.97 7.10 7.14 7.04 7.22 7.03	11 8.20 69 1.90 0.53 1.10 38 13.8 1.75 2.79 3.52 3.95 0.32	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (25) ND (50) ND (50) ND (500) ND (500) ND (500) ND (500) ND (50) ND (50)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (25) ND (50)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (500) ND (50) ND (50)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (500) ND (250) ND (25) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (500) ND (50)	1,600 1,300 4,400 3,900 5,500 1,600 1,900 2,500 1,970 1,450 ND (500) 574 1,870	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (500) ND (50) ND (50)	ND (500) ND (500) ND (5,000) ND (5,000) ND (500) ND (500) ND (250) ND (250) ND (25) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500)	9,200 6,200 14,000 13,000 15,000 6,100 8,500 6,600 5,260 4,300 10,500 3,360 ND (0.5)	86,000 41,000 140,000 140,000 180,000 62,000 46,500 39,300 31,900 81,800 20,000 94,100 52,500	41,7 22,4 81,6 87,6 63,6 30,6 44,0 23,8 19,8 30,5 9,3 7,2
MW-2	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97 May-98 Nov-98 Aug-99 Dec-99 Apr-00 Oct-00 Apr-01 Oct-01 Apr-02	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43 1.0 ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	7.1 7.2 7.3 6.82 6.94 6.70 7.03 7.2 6.97 7.10 7.14 7.04 7.22 7.03 7.02	11 8.20 69 1.90 0.53 1.10 38 13.8 1.75 2.79 3.52 3.95 0.32 6.68	ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (50)	ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (250) ND (50) ND (50) ND (500) ND (500) ND (500) ND (50) ND (0.55) ND (1,000)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (25) ND (50) ND (50) ND (500) ND (500) ND (50) ND (50) ND (0.5) ND (1,000)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (25) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (50) ND (50) ND (1,000)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (500) ND (500) ND (500) ND (1,000)	1,600 1,300 4,400 3,900 5,500 1,600 1,900 2,500 1,970 1,450 ND (500) 574 1,870 1,374	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (25) ND (50) ND (50) ND (500) ND (500) ND (500) ND (500)	ND (500) ND (500) ND (5,000) ND (5,000) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (500)	9,200 6,200 14,000 13,000 15,000 6,100 8,500 6,600 5,260 4,300 10,500 3,360 ND (0.5) 6,230	86,000 41,000 140,000 140,000 180,000 62,000 46,500 39,300 31,900 81,800 20,000 94,100 52,500	41,7 22,4 81,6 87,6 30,6 44,6 28,7 23,8 19,8 30,5 9,3 7,2
MW-2	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97 May-98 Nov-98 Aug-99 Dec-99 Apr-00 Oct-00 Apr-01 Oct-01 Apr-02 Oct-02	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43 1.0 ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	7.1 7.2 7.3 6.82 6.94 6.70 7.03 7.2 6.97 7.10 7.14 7.04 7.22 7.03 7.02 6.78	11 8.20 69 1.90 0.53 1.10 38 13.8 1.75 2.79 3.52 3.95 0.32 6.68 9.99	ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (250) ND (50) ND (500) ND (500) ND (500) ND (500) ND (0.55) ND (1,000) ND (500)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (25) ND (50) ND (50) ND (50) ND (50) ND (50) ND (50) ND (0.5) ND (1,000) ND (500)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (25) ND (50) ND (50) ND (500) ND (500) ND (500) ND (500) ND (50) ND (1,000) ND (500)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (500) ND (500) ND (500) ND (500) ND (500) ND (1,000) ND (500)	1,600 1,300 4,400 3,900 5,500 1,600 1,900 2,500 1,970 1,450 ND (500) 574 1,870 1,374 3,660	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (25) ND (50) ND (50) ND (50) ND (500) ND (50) ND (50) ND (0.5) ND (1,000) ND (500)	ND (500) ND (500) ND (5,000) ND (5,000) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (50) ND (50) ND (50) ND (50)	9,200 6,200 14,000 13,000 15,000 6,100 8,500 6,600 5,260 4,300 10,500 3,360 ND (0.5) 6,230 12,600 5,710	86,000 41,000 140,000 140,000 180,000 62,000 46,500 39,300 31,900 81,800 20,000 94,100 52,500 107,000	41,7 22,4 81,6 87,6 63,6 30,6 44,6 23,1 19,8 30,5 9,3 7,2 34,8 63,5
MW-2	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97 May-98 Nov-98 Aug-99 Dec-99 Apr-00 Oct-00 Apr-01 Oct-01 Apr-02 Oct-02 Apr-03	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43 1.0 ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	7.1 7.2 7.3 6.82 6.94 6.70 7.03 7.2 6.97 7.10 7.14 7.04 7.22 7.03 7.02 6.78 6.97	11 8.20 69 1.90 0.53 1.10 38 13.8 1.75 2.79 3.52 3.95 0.32 6.68 9.99 20.80	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (500) ND (500)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (500) ND (500) ND (500) ND (0.5) ND (1,000) ND (500) ND (500) ND (500)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (25) ND (50) ND (50) ND (50) ND (50) ND (50) ND (50) ND (0.5) ND (1,000) ND (500) ND (500)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (500) ND (500) ND (500) ND (500) ND (1,000) ND (500) ND (500) ND (500)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (500) ND (500) ND (500) ND (500) ND (1,000) ND (500) ND (500) ND (500) ND (500)	1,600 1,300 4,400 3,900 5,500 1,600 1,900 2,500 1,970 1,450 ND (500) 574 1,870 1,374 3,660 2,080	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (25) ND (50) ND (50) ND (500) ND (500) ND (50) ND (0.5) ND (1,000) ND (500) ND (500)	ND (500) ND (500) ND (5,000) ND (5,000) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500)	9,200 6,200 14,000 13,000 15,000 6,100 8,500 6,600 5,260 4,300 10,500 3,360 ND (0.5) 6,230 12,600 5,710 6,800	86,000 41,000 140,000 140,000 180,000 62,000 46,500 39,300 31,900 81,800 20,000 94,100 52,500 107,000 47,400 55,500	41,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
MW-2	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97 May-98 Nov-98 Aug-99 Dec-99 Apr-00 Oct-00 Apr-01 Oct-01 Apr-02 Oct-02 Apr-03 Oct-03	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43 1.0 ND (0.5) ND (0.5)	7.1 7.2 7.3 6.82 6.94 6.70 7.03 7.2 6.97 7.10 7.14 7.04 7.22 7.03 7.02 6.78 6.97 6.89	11 8.20 69 1.90 0.53 1.10 38 13.8 1.75 2.79 3.52 3.95 0.32 6.68 9.99 20.80 30.20	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (500) ND (500) ND (500) ND (0.5) ND (1,000) ND (500)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (25) ND (50) ND (50) ND (500) ND (500) ND (50) ND (0.5) ND (1,000) ND (500)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (25) ND (50) ND (50) ND (500) ND (500) ND (500) ND (500) ND (1,000) ND (500)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (500) ND (500) ND (500) ND (500) ND (1,000) ND (500)	1,600 1,300 4,400 3,900 5,500 1,600 1,900 2,500 1,970 1,450 ND (500) 574 1,870 1,374 3,660 2,080 2,200	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (25) ND (50) ND (50) ND (500) ND (500) ND (50) ND (0.5) ND (1,000) ND (500)	ND (500) ND (500) ND (5,000) ND (5,000) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (250) ND (250)	9,200 6,200 14,000 13,000 15,000 6,100 8,500 6,600 5,260 4,300 10,500 3,360 ND (0.5) 6,230 12,600 5,710 6,800 5,500	86,000 41,000 140,000 140,000 180,000 62,000 46,500 39,300 31,900 81,800 20,000 94,100 52,500 107,000 47,400 55,500 35,400	41,, 22,4 81,6 87,6 63,6 30,6 44,1 28,7 23,1 19,5 30,9 33,7,2 34,1 63,7 27,1 33,6
MW-2	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97 May-98 Nov-98 Aug-99 Dec-99 Apr-00 Oct-00 Apr-01 Oct-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43 1.0 ND (0.5) ND (0.5)	7.1 7.2 7.3 6.82 6.94 6.70 7.03 7.2 6.97 7.10 7.14 7.04 7.22 7.03 7.02 6.78 6.97 6.89 7.20	11 8.20 69 1.90 0.53 1.10 38 13.8 1.75 2.79 3.52 3.95 0.32 6.68 9.99 20.80 30.20 4.72	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (250) ND (250)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (500) ND (250) ND (250)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (500) ND (500) ND (500) ND (0.5) ND (1,000) ND (500) ND (250)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (500) ND (500) ND (500) ND (500) ND (1,000) ND (500) ND (250) ND (250)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (250) ND (250)	1,600 1,300 4,400 3,900 5,500 1,600 1,900 2,500 1,970 1,450 ND (500) 574 1,870 1,374 3,660 2,080 2,200 650	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (500) ND (250) ND (250)	ND (500) ND (500) ND (5,000) ND (5,000) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500)	9,200 6,200 14,000 13,000 15,000 6,100 8,500 6,600 5,260 4,300 10,500 3,360 ND (0.5) 6,230 12,600 5,710 6,800 5,500 4,240	86,000 41,000 140,000 180,000 120,000 62,000 46,500 39,300 31,900 81,800 20,000 94,100 52,500 107,000 47,400 55,500 35,400 26,400	41,, 22,4 81,6 87,6 63,6 30,6 44,0 28,7 23,1 19,5 30,9,3 7,2 34,6 63,7 27,0 33,4 25,4
MW-2	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97 May-98 Nov-98 Aug-99 Dec-99 Apr-00 Oct-00 Apr-01 Oct-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04 Oct-04	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43 1.0 ND (0.5) ND (0.5)	7.1 7.2 7.3 6.82 6.94 6.70 7.03 7.2 6.97 7.10 7.14 7.04 7.22 7.03 7.02 6.78 6.97 6.89 7.20 7.49	11 8.20 69 1.90 0.53 1.10 38 13.8 1.75 2.79 3.52 3.95 0.32 6.68 9.99 20.80 30.20 4.72 0.686	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (250) ND (250) ND (250)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (250) ND (500) ND (250) ND (250) ND (250)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (500) ND (250) ND (250) ND (250)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (250) ND (250) ND (250)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (250) ND (250) ND (250)	1,600 1,300 4,400 3,900 5,500 1,600 1,900 2,500 1,970 1,450 ND (500) 574 1,870 1,374 3,660 2,080 2,200 650 505	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (250) ND (250) ND (250)	ND (500) ND (500) ND (5,000) ND (5,000) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (250) ND (250)	9,200 6,200 14,000 13,000 15,000 6,100 8,500 6,600 5,260 4,300 10,500 3,360 ND (0.5) 6,230 12,600 5,710 6,800 5,500	86,000 41,000 140,000 140,000 180,000 62,000 46,500 39,300 31,900 81,800 20,000 94,100 52,500 107,000 47,400 55,500 35,400	41,7 22,4 81,6 87,6 63,6 30,6 44,6 28,7 23,1 19,8 30,5 9,3 7,2 34,1 63,7 27,4 33,4 25,4 25,4
MW-2	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97 May-98 Nov-98 Aug-99 Dec-99 Apr-00 Oct-00 Apr-01 Oct-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04 Oct-04 Apr-05	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43 1.0 ND (0.5) ND (0.5)	7.1 7.2 7.3 6.82 6.94 6.70 7.03 7.2 6.97 7.10 7.14 7.04 7.22 7.03 7.02 6.78 6.97 6.89 7.20 7.49 7.05	11 8.20 69 1.90 0.53 1.10 38 13.8 1.75 2.79 3.52 3.95 0.32 6.68 9.99 20.80 30.20 4.72 0.686 6.89	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (500) ND (500) ND (500) ND (500) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (250) ND (500) ND (250) ND (250) ND (250) ND (250)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (500) ND (250) ND (250) ND (250) ND (250)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (250) ND (250) ND (250) ND (250) ND (250)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (250) ND (250) ND (250) ND (250)	1,600 1,300 4,400 3,900 5,500 1,600 1,900 2,500 1,970 1,450 ND (500) 574 1,870 1,374 3,660 2,080 2,200 650 505 1400	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (500) ND (250) ND (250) ND (250) ND (250)	ND (500) ND (500) ND (5,000) ND (5,000) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (500) ND (250) ND (250) ND (250) ND (250)	9,200 6,200 14,000 13,000 15,000 6,100 8,500 6,600 5,260 4,300 10,500 3,360 ND (0.5) 6,230 12,600 5,710 6,800 5,500 4,240	86,000 41,000 140,000 180,000 120,000 62,000 46,500 39,300 31,900 81,800 20,000 94,100 52,500 107,000 47,400 55,500 35,400 26,400	41,7 22,4 81,0 87,6 63,6 30,6 44,0 28,7 23,8 19,8 30,5 9,3 7,2 34,8 63,5 27,6 33,4 25,5
MW-2	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97 May-98 Nov-98 Aug-99 Dec-99 Apr-00 Oct-00 Apr-01 Oct-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04 Oct-04 Apr-05 Nov-05	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43 1.0 ND (0.5)	7.1 7.2 7.3 6.82 6.94 6.70 7.03 7.2 6.97 7.10 7.14 7.04 7.22 7.03 7.02 6.78 6.97 6.89 7.20 7.49 7.05 7.14	11 8.20 69 1.90 0.53 1.10 38 13.8 1.75 2.79 3.52 3.95 0.32 6.68 9.99 20.80 30.20 4.72 0.686 6.89 2.90	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (500) ND (500) ND (500) ND (250)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (250) ND (500) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (500) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (250)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (500) ND (250)	1,600 1,300 4,400 3,900 5,500 1,600 1,900 2,500 1,970 1,450 ND (500) 574 1,870 1,374 3,660 2,080 2,200 650 505 1400 2850	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (500) ND (250) ND (250) ND (250) ND (250) ND (250)	ND (500) ND (500) ND (5,000) ND (5,000) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (500) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250)	9,200 6,200 14,000 13,000 15,000 6,100 8,500 6,600 5,260 4,300 10,500 3,360 ND (0.5) 6,230 12,600 5,710 6,800 5,500 4,240 6,900	86,000 41,000 140,000 180,000 120,000 62,000 46,500 39,300 31,900 81,800 20,000 94,100 52,500 107,000 47,400 55,500 35,400 26,400 40,700	41,7 22,4 81,0 87,6 63,6 30,6 44,0 28,7 23,8 19,8 30,5 9,3 7,2 34,8 27,6 33,4 25,5 23,1 32,8 34,6
MW-2	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97 May-98 Nov-98 Aug-99 Dec-99 Apr-00 Oct-00 Apr-01 Oct-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04 Oct-04 Apr-05 Nov-05 May-06	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43 1.0 ND (0.5)	7.1 7.2 7.3 6.82 6.94 6.70 7.03 7.2 6.97 7.10 7.14 7.04 7.22 7.03 7.02 6.78 6.97 6.89 7.20 7.49 7.05 7.14 N/A	11 8.20 69 1.90 0.53 1.10 38 13.8 1.75 2.79 3.52 3.95 0.32 6.68 9.99 20.80 30.20 4.72 0.686 6.89 2.90 2.93	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (500) ND (250) ND (500)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (500) ND (250) ND (500)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (500) ND (250) ND (500)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (250)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (500) ND (250)	1,600 1,300 4,400 3,900 5,500 1,600 1,900 2,500 1,970 1,450 ND (500) 574 1,870 1,374 3,660 2,080 2,200 650 505 1400 2850 884	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (500) ND (250) ND (500)	ND (500) ND (500) ND (5,000) ND (5,000) ND (5,000) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250) ND (500)	9,200 6,200 14,000 13,000 15,000 6,100 8,500 6,600 5,260 4,300 10,500 3,360 ND (0.5) 6,230 12,600 5,710 6,800 5,500 4,240 6,900 6,150	86,000 41,000 140,000 140,000 180,000 120,000 62,000 46,500 39,300 31,900 81,800 20,000 94,100 52,500 107,000 47,400 55,500 35,400 26,400 40,700 41,000 17,800 54,000	12,6 41,7 22,4 81,0 87,0 63,0 30,0 44,0 28,7 23,8 30,5 9,3 7,2,0 34,8 63,5 27,6 33,4 25,5 23,1 32,8 34,8 34,8 34,8
MW-2	Jun-95 Sep-95 Dec-95 Mar-96 Jan-97 Apr-97 Oct-97 May-98 Nov-98 Aug-99 Dec-99 Apr-00 Oct-00 Apr-01 Oct-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04 Oct-04 Apr-05 Nov-05	0.70 0.77 ND (0.5) 1.3 1.9 0.94 0.43 1.0 ND (0.5)	7.1 7.2 7.3 6.82 6.94 6.70 7.03 7.2 6.97 7.10 7.14 7.04 7.22 7.03 7.02 6.78 6.97 6.89 7.20 7.49 7.05 7.14	11 8.20 69 1.90 0.53 1.10 38 13.8 1.75 2.79 3.52 3.95 0.32 6.68 9.99 20.80 30.20 4.72 0.686 6.89 2.90	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (500) ND (500) ND (500) ND (250)	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (250) ND (500) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (500) ND (250) ND (250) ND (250) ND (250) ND (250) ND (250)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500) ND (250)	ND (50) ND (50) ND (50) ND (500) ND (500) ND (500) ND (250) ND (250) ND (500) ND (250)	1,600 1,300 4,400 3,900 5,500 1,600 1,900 2,500 1,970 1,450 ND (500) 574 1,870 1,374 3,660 2,080 2,200 650 505 1400 2850	ND (50) ND (50) ND (50) ND (50) ND (500) ND (500) ND (250) ND (250) ND (50) ND (50) ND (500) ND (250) ND (250) ND (250) ND (250) ND (250)	ND (500) ND (500) ND (5,000) ND (5,000) ND (500) ND (500) ND (250) ND (250) ND (50) ND (500)	9,200 6,200 14,000 13,000 15,000 6,100 8,500 6,600 5,260 4,300 10,500 3,360 ND (0.5) 6,230 12,600 5,710 6,800 5,500 4,240 6,900 6,150 3,750	86,000 41,000 140,000 180,000 120,000 62,000 46,500 39,300 31,900 81,800 20,000 94,100 52,500 107,000 47,400 55,500 35,400 26,400 40,700 41,000 17,800	41,7 22,4 81,0 87,0 63,0 30,0 44,0 28,7 23,8 19,8 30,5 9,3 7,2 34,8 63,5 27,6 33,4 25,5 23,1 32,8 34,5

														211 21 22	
	1	0.000			.		·			T		t et.			
Monitoring Well	Date	TPH (mg/L)	pH units	MBAS (mg/L)	1,1-DCA (ug/L)	I,I-DCE (ug/L)	PCE (ug/L)	Carbon Tetrachloride (ug/L)	Chloroform (ug/L)	1,2 DCA (ug/L)	TCE (ug/L)	Benzene (ng/L)	Ethylbewzene (ug/L)	Tokuene	Total Xylenes (ug/L)
	Apr-91 Jan-94	}	7.17 6.9	2.00 1.10				NA ND (500)	NA ND (500)	NA ND (500)	NA	ND (13,000)	14,000	(ug/L) 110,000	52,000
	Apr-94		7.4	6.60	ND (5)		ND (5)	9.2	5.1	16	ND (500) ND (5)	ND (500) ND (500)	15,000 14,000	24,000 21,000	68,000 25,500
	Jul-94 Nov-94		7.0 6.7	10 0.46	ND (20) ND (250)		ND (20) ND (250)	ND (20) ND (250)	ND (20) ND (250)	ND (20) ND (250)	ND (20) ND (250)	ND (100) ND (250)	6,500	2,800	2,360 8,900
	Jun-95 Sep-95	ND(0.5) 0.65	7.0 6.9	5 11	ND (0.5)	NID (5)	ND (0.5)	ND (0.5) 15	ND (0.5)	19	ND (0.5)	ND (500)	11,000 7,800	12,000 7,400	6,900
	Dec-95 5	0.88	7.1	5	ND (5) ND (5)	ND (5) ND (5)	ND (5) ND (5)	28	ND (5)	52 220	ND (5) ND (5)	8.2 ND (500)	7,200	1,200	15,500
	Mar-96	0.93	7.2	9.20	ND (5)	ND (5)	8.7	14	7.8	26	ND (5)	ND (500)	3,900 10,000	47,000 21,000	44,900 29,800
	Jan-97 Apr-97	0.76 1.70	7.03 6.85	14	ND (5) ND (0.5)	ND (5) ND (0.5)	ND (5) ND (0.5)	7.0 5.1	6.4	25.0 38.0	ND (5) 1.2	ND (500) 8.7	11,000	12,000	32,000
	Oct-97	0.34	6.86	6.90	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)	130	ND (13)	ND (13)	5,500 6,800	2,800 4,400	5,600 5,000
	May-98 Nov-98	ND (0.5) 0.68	7.23 7.20	1.50 4.10	ND (50) ND (50)	ND (50) ND (50)	ND (50) ND (50)	ND (50) ND (50)	ND (50) ND (50)	ND (50)	ND (50) ND (50)	ND (50) ND (50)	460	1,100	1,800
!	Aug-99	ND (0.5)	7.26	3.30	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	52	ND (5)	ND (5)	4,600 2,730	15,000 5,210	20,000 9,480
MW-3	Dec-99 Apr-00	ND (0.5) ND (0.5)	7.30 7.28	2,11 2,77	ND (50) ND (50)	ND (50) ND (50)	ND (50) ND (50)	ND (50) ND (50)	ND (50) ND (50)	70 155	ND (50) ND (50)	ND (50) ND (50)	3,100 5,600	12,200 25,800	10,720 20,830
	Oct-00	ND (0.5)	7.33	2.16	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	51	ND (50)	ND (50)	4,620	11,000	. 11,100
	Apr-01 Oct-01	ND (0.5) ND (0.5)	7.34 7.32	1.28 1.32	ND (50) ND (0.5)	ND (50) ND (0.5)	ND (50) ND (0.5)	ND (50) ND (0.5)	ND (50) ND (0.5)	45J ND (0.5)	ND (50) ND (0.5)	ND (50) ND (0.5)	4,670 ND (0.5)	7,340 18,200	11,680 35,500
	Apr-02	ND (0.5)	7.08	3.03	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	3,170	10,300	15,900
	Oct-02 Apr-03	ND (0.5) ND (0.5)	7.11 7.20	3.02 2.41	ND (50) ND (250)	ND (50) ND (250)	ND (50) ND (250)	ND (50) ND (250)	ND (50) ND (250)	ND (50) ND (250)	ND (50) ND (250)	ND (50) ND (250)	4,030 7,400	7,670 12,400	13,700 32,700
	Oct-03	ND (0.5)	7.21 7.16	3.69	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	55.0	ND (50)	ND (50)	3,610	8,000	14,500
	May-04 Oct-04	ND (0.5) ND (0.5)	7.10	4.61 0.914	ND (100) ND (100)	ND (100) ND (100)	ND (100) ND (100)	ND (100) ND (100)	ND (100) ND (100)	140.0 ND (100)	ND (100) ND (100)	ND (100) ND (100)	5,280 2,240	14,000 4,080	19,800 9,060
	Apr-05 Nov-05	ND (0.5)	7.04 NA	3.07	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	120	ND (100)	ND (100)	6,080	6,220	21,900
	May-06	NA ND (0.5)	NA NA	NA 1.65	NA ND	NA ND (50)	NA ND (50)	NA ND (50)	NA 13J	NA 18J	NA ND (50)	NA ND (50)	NA 2,390	NA 3,250	NA 7,510
	Oct-06	ND (0.17)	7.16	1.15	ND (4.0)	ND (4.0)	ND (9.0)	ND (6.0)	27.6J	33.6J	ND (4.0)	ND (6.0)	3,670	4,670	11,800
	Apr-07 Oct-07	ND (0.17) ND (0.5)	7.18 6.6 7	ND (0.025) 1.95	ND (2.4) ND (12)	ND (2.3) ND (11)	ND (4.0) ND (23)	ND (3.1) ND (15)	6.4J ND (15)	32.5 52.5J	ND (2.3) ND (11)	ND (3.2) ND (16)	2,600 4,250	3,820 8,900	8,980 14,400
	Apr-91		NA	NA				NA	NA	NA	NA	NA	NA	NA	NA
	Jan-94 Apr-94		7.2 7.5	ND (0.5) 0.058	ND (0.5)		ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	1.4 2.5	ND (0.5) ND (5)	7.5 37	29 210	31 116
	Jul-94		7.3	1.60	ND (0.5)		1.0	ND (0.5)	ND (0.5)	ND (0.5)	5.4	ND (0.5)	13	52	33
	Nov-94 Jun-95	ND(0.5)	6.8 7.3	0.10 0.04	ND (5) ND(0.5)		ND (5) 0.91	ND (5) ND (0.5)	ND (5) ND (0.5)	6.8 2.7	ND (5) ND (0.5)	ND (5) ND (0.5)	83 ND (0.5)	200 ND (0.5)	180 ND (0.5)
	Sep-95	0.58	7.0	0.66	0.82	ND (0.5)	0.98	ND (0.5)	ND (0.5)	2.1	3.1	6.0	66	180	154
	Dec-95 Mar-96 ⁷	0.82 ND (0.5)	7.2 7.4	2.10 0.21	ND (5) ND (0.5)	ND (5) ND (0.5)	ND (5) 4.8	ND (5) 1.20	ND (5) ND (0.5)	76 11	6.2 1.2	ND (500) ND (0.5)	9,200 54. ⁴	19,000 110 ⁴	38,100 196 ⁴
	Jan-97	ND (0.5)	6.95	ND (.10)	0.52	ND (0.5)	1.2	ND (0.5)	ND (0.5)	27	2.3	ND (5)	49	51	330
	Apr-97 Oct-97	ND (0.05) ND (0.05)	7.02 6.6	0.28 0.15	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	1.3 1.3	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	17 21	3.0 3.1	ND (0.5) ND (0.5)	8.7 28	4.8 19	10 26
	May-98	ND (0.05)	7.48	0.13	ND (0.5)	ND (0.5)	1.7	ND (0.5) ND (0.5)	ND (0.5)	14	3.1	ND (0.5)	5.5	1.4	5.8
	Nov-98 Aug-99	ND (0.05) ND (0.5)	7.4 7.34	0.27 0.30	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	1.4 1.0	0.78 ND (0.5)	0.56 ND (0.5)	8.4 16.6	2.2 1.9	ND (0.5) ND (0.5)	270 93.8	49 117	93 83.6
MW-4	Dec-99	ND (0.5)	7.41	0.23	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	10.9	2.2	ND (0.5)	6.9	ND (0.5)	3.5
4	Арг-00 Oct-00	ND (0.5) ND (0.5)	7.41 7.39	0.26 0.25	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) 1.1	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	11.2 1.4	ND (0.5) 2.1	ND (0.5) ND (0.5)	15.3 43.4	43 21.4	47 17.7
	Apr-01	ND (0.5)	7.40	0.19	ND (5)	ND (5)	ND (5)	ND (0.5) ND (5)	ND (5)	8.0	ND (5)	ND (5)	105.0	403.0	195.0
	Oct-01 Apr-02	ND (0.5) ND (0.5)	7.38 7.38	ND (0.05) 0.10	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	1.0 0.7	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) 2.1	1.0 ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) * ND (0.5)	2,5 ND (1.0)
	Oct-02	ND (0.5)	7.32	0.12	ND (0.5)	ND (0.5)	1.0	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	5.4	2.1	ND (0.5)	4.50	ND (0.5)	3.30
	Apr-03 Oct-03	ND (0.5) ND (0.5)	7.34 7.27	0.11 0.38	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	1.1 0.68	ND (0.5)	ND (0.5)	ND (0.5) 19.9	2.9 1.16	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	32.70 ND (0.5)	26.80 1.49
	May-04	ND (0.5)	7.28	0.55	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	1.00	ND (0.5) ND (0.5)	0.58 ND (0.5)	19.9 27.9	2.20	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	Oct-04	ND (0.5) ND (0.5)	7.48 7.38	0,225 0,14	ND (0.5)	ND (0.5)	1.8	ND (0.5)	ND (0.5)	5.2 7	8.9 11.3	ND (0.5) ND (0.5)	NID (0.5) 38.6	ND (0.5) 32	ND (1.0) 204
	Apr-05 Nov-05	ND (0.5) ND (0.5)	7.38	0.14	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	1.6 0.7	ND (0.5) ND (0.5)	ND (0.5) 0.10 J	2.4	2.8	ND (0.5)	34	3	94.8
	May-06	ND (0.5)	N/A	ND (0.05)	ND (0.5)	ND (0.5)	0.65	ND (0.5)	0.24Ј	1.2	1.7	ND (0.5) ND (0.064)	ND (0.5) 8.5	ND (0.5) 2.2	ND (1.0) 37.7
	Oct-06 Apr-07	ND (0.17) ND (0.17)	7.43 7.40	ND (0.05) ND (0.025)	ND (0.048) ND (0.048)	ND (0.046) ND (0.046)	ND (0.093) 0.52	ND (0.062) ND (0.062)	0.18J 0.08J	1.3 0.14J	1.2 1.1	ND (0.064)	ND (0.074)	ND (0.092)	8.0
	Oct-07	ND (0,5)		0.08J		ND (0.046)		ND (0.062)	0.15J	, i	1.5	ND (0.064)	NO (0.074)	MD (0.095)	14.4

14		TPH (mg/L)	pH units	MBAS (mg/L)	1,1-DCA (ag/L)	I,I-DCE (ug/L)	PCE (ug/L)	Carbon Tetrachloride (ug/L)	Chleroform (ug/L)	1,2 DCA (ug/L)	TCE	Benzene	Ethylbenzene	Toloese	Total Xylenes
Monitoring Well	Date Apr-91	tue. Py	7.28	0.2	LAB AY	(45/4/	ANE HA	NA	NA	NA	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	Jan-94		7.28	1.5				660	120	ND (10)	NA ND (10)	3.2	ND (0,5)	1.2	ND (1) 44
	Apr-94		7.6	0.57	ND (2.5)		ND (2.5)	470 ⁴	120	ND (2.5)	ND (2.5)	ND (10) ND (2.5)	ND (10)	18	ND (2.5)
	Jul-94		7.5	4.10	ND (5)		ND (5)	370 ⁴	98	88	ND (5)	ND (5)	ND (2.5) 110	ND (2.5)	286
	Nov-94		7.3	0.95	ND (25)		ND (25)	900	320	26	ND (25)	ND (25)	ND (25)	35	ND (75)
	Jun-95	ND(0.5)	7.5	0.73	ND(5)		ND(5)	460 ⁴	230	ND (5)	ND (5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	Sep-95 6	ND(0.5)	7.4	1.7	ND (5)	ND (5)	ND (5)	520	280	ND (5)	ND (5)	ND (0.5)	. 14	61	50.5
	Dec-95 Mar-96	ND(0.5) ND (0.5)	7.6 7.7	1.9 1.4	ND (500) ND (5)	ND (500) ND (5)	ND (500) ND (5)	ND (500) 340	ND (500) 160	ND (500) ND (5)	ND (500) ND (5)	ND (500)	ND (500)	ND (500)	ND (500)
	Jan-97	ND (0.5)	7.4	5	ND (5)	ND (5)	ND (5)	750	310	ND (5)	ND (5)	ND (0.5) ND (0.5)	3.5 12	3.6 5.9	16.5 - 79
	Apr-97	0.29	7.38	4.8	ND (5)	ND (5)	ND (5)	930	330	ND (5)	ND (5)	ND (0.5)	ND (0.5)	2.8	4.6
	Oct-97 10	0.56	7.2	1.1	ND (2.5)	ND (2.5)	7.7	1,400	560	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (7.5)
	May-98	ND (0.5)	7.47	0.81	ND (0.5)	ND (0.5)	3.3	490	120	ND (0.5)	2.3	ND (0.5)	1.0	0.86	5.2
	Nov-98 Aug-99	ND (0.5) ND (0.5)	7.5 7.34	1.4 2.37	ND (0.5) ND (5)	ND (0.5) ND (5)	3.1 ND (5)	390 483	130 218	ND (0.5) ND (5)	1.2 ND (5)	ND (0.5)	ND (0.5)	ND (0.5)	1.7 ND (10)
MW-5	Dec-99	ND (0.5)	7.37	1.36	ND (5)	ND (5)	ND (5)	385	137	ND (5)	ND (5)	ND (5) ND (5)	ND (5) ND (5)	ND (5) ND (5)	ND (10)
	Apr-00	ND (0.5)	7.40	1.00	ND (5)	ND (5)	17.00	316	126	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)
	Oct-00	ND (0.5)	7.42	1.02 1.18	ND (5)	ND (5)	11.0	179	82	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)
	Apr-01 Oct-01	ND (0.5) ND (0.5)	7.45 7.36	1.13	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	4.2 ND (0.5)	199 185	97 86	ND (0.5) ND (0.5)	1.50 ND (0.5)	ND (0.5) ND (0.5)	ND (0.5)	ND (0.5)	ND (1) ND (1.0)
	Apr-02	ND (0.5)	7.39	1.45	ND (2.5)	ND (2.5)	3.0	151	73	ND (2.5)	ND (2.5)	ND(2.5)	ND (0.5) ND(2.5)	ND (0.5) ND(2.5)	ND(5.0)
	Oct-02	ND (0.5)	7.37	0.76	ND (5)	ND (5)	ND (5)	173	70	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)
	Apr-03	ND (0.5)	7.34	0.53	ND (0.55)	ND (0.5)	3.4	ND (0.5)	49	ND (0.5)	2.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	Oct-03 May-04	ND (0.5) ND (0.5)	7.35 7.37	1.73 0.25	ND (2.5) ND (2.5)	ND (2.5) ND (2.5)	3.4 2.5	1.84 70.0	82 34.5	ND (2.5) 6.0	.71J 2.5	ND (2.5) ND (2.5)	,89J	ND (2.5)	1.13 ND (5.0)
·	Oct-04	ND (0.5)	7.65	0.264	ND (0.5)	ND (0.5)	4.0	21.1	10.2	ND (0.5)	1.9	ND (0.5)	ND (2.5) ND (0.5)	ND (2.5) ND (0.5)	ND (3.0)
	Apr-05	ND (0.5)	7.37	0.81	ND (2.5)	ND (2.5)	5.0	72.0	47.0	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (5.0)
	Nov-05	ND (0.5)	7.37	0.37	. ND (2.5)	ND (2.5)	4.0	67.5	47.0	ND (2.5)	1.8 J	ND (2.5)	ND (2.5)	ND (2.5)	ND (5.0)
	May-06	ND (0.5)	N/A	0.31	ND (2.5)	ND (2.5)	3.5	45.4	36.5	ND (2.5)	1.75	ND (2.5)	ND (2.5)	ND (2.5)	ND (5)
	Oct-06 May-07	ND (0.17) ND (0.17)	7.43 7.45	0.29 0.13	ND (0.048) 0.10J	ND (0.046) ND (0.046)	0.72 3.20	8.9 28.0	6.5 19.1	ND (0.077) ND (0.077)	0,27J 1.1	ND (0.064) ND (0.064)	ND (0.074) ND (0.074)	ND (0.092) ND (0.092)	ND (0.059) ND (0.059)
	Oct-07	ND (0.17)	7.37	0.39	ND (0.24)		4.00	78.0	41.0	ND (0.85)	1.63	ND (0.32)	NO (0.37)	ND (0.46)	6
	Apr-91	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7.27	ND (0.1)				NA	NA	NA	NA	0.61	ND (0.5)	ND (0.5)	ND (1)
	Jan-94		7.4	1.1				49,	25	7.1	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (3.8)
	Apr-94	1	7.6	1.4	ND (0.5)		0.74	39 4	25 4	ND (0.5)	1.4 4	ND (0.5)	0.67	ND (0.5)	0.6
	Jul-94		7.6	0.7	ND (0.5)		0.65	38 ⁴	28	ND (0.5)	1.5 1.0	ND (0.5) ND (1.0)	21 6.7	42 ⁴ 30	50 ⁴ 22
	Nov-94 Jun-95	ND(0.5)	7.5 7.5	1.4 0.48	ND (1.0) ND(5)		ND (1.0) ND(5)	38 110	21 36	7.9 ND (5)	ND (5)	ND (1.0) ND (0.5)	ND (0.5)	ND (0.5)	0.72
	Sep-95	ND(0.5)	7.5	1	ND (5)	ND (5)	ND (5)	150	66	13	ND (5)	ND (0.5)	26	89	17
	Dec-95	ND(0.5)	7.6	2.7	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)	ND (500)
	Mar-96 8	ND (0.5)	7.6	2.2	ND (0.5)	ND (0.5)	3.50	270	120	24	0.88	ND (0.5)	3.6	4.2	16.6
	Jan-97	ND (0.5)	7.56	2.5	ND (5)	ND (5)	ND (5)	81	99	14	ND (5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	4.1 6.7
	Apr-97 Oct-97 11	0.61	7.49	0.54	ND (5)	ND (5)	ND (5)	91	130 210	20	ND (5) 0.65	ND (0.5)	ND (0.5)	ND (0.5)	3.4
	May-98 12	0.21 0.17	7.03 7.43	3.1 0.81	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	1.3 2.3	55 130	47	33 ND (0.5)	4.5	ND (0.5)	2.4	0.6	8.3
	Nov-98	0.17	7.43	2	ND (0.5)	ND (0.5)	2.6	81	79	21	1.7	0.65	ND (0.5)	ND (0.5)	ND (1.5)
	Aug-99	ND (0.5)	7.21	4.46	ND (2.5)	ND (2.5)	ND (2.5)	183	143	36	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (5)
MW-6	Dec-99	ND (0.5)	7.31	1.57	ND (5)	ND (5)	ND (5)	291	177	23	ND (5)	ND (5) ND (0.5)	ND (5) ND (0.5)	ND (5) ND (0.5)	ND (10) ND (1.0)
	Apr-00	ND (0.5) ND (0.5)	7.36 7.38	2.67 1.76	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	2.00	105	76 47.4	15.9 14.9	1.30 1.50	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	Oct-00 Apr-01	ND (0.5) ND (0.5)	7.40	1.47	ND (0.5)	ND (0.5)	2.50	48.6 40.7	50.1	16.4	1.50	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	Oct-01 19	ND (0.5)	7.30	2.80	ND (0.5)	ND (0.5)	23.0	111.0	90.0	20.0	302.0	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	Apr-02	ND (0.5)	7.33	1.70	ND (0.5)	ND (0.5)	2.0	26.4	27.0	9.1	1.0	ND (0.5)	ND (0.5) * ND (2.5) *	ND (0.5) ND (2.5)	ND (1.0)
	Oct-02	ND (0.5)	7.31	1.30	ND (2.5)	ND (2.5)	ND (2.5)	60.0	48.0	8.0	ND (2.5)	ND (2.5) ND (0.5)	ND (0.5)	ND (2.5) ND (0.5)	ND (5) ND (1.0)
	Apr-03	ND (0.5)	7.34	0.77	ND (0.5)	ND (0.5)	2.7 2.3J	37.3	34.9 71.0	ND (0.5) 11.0	2.4 ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (5.0)
	Oct-03 May-04	ND (0.5) ND (0.5)	7.32	2.88 1.02	ND (2.5) ND (2.5)	ND (2.5) ND (2.5)	ND (2.5)	77.0 103.0	70.0	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (5.0)
	Oct-04	ND (0.5)	7.56	0.393	ND (0.5)	ND (0.5)	0.9	17.2	13.8	ND (0.5)	1.0	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	Apr-05	ND (0.5)	7.37	0.79	ND (2.5)	ND (2.5)	ND (2.5)	22.0	22.5	5	ND (2.5)	ND (2.5) ND (2.5)	ND (2.5) ND (2.5)	ND (2.5) ND (2.5)	ND (5.0)
	Nov-05	ND (0.5)	7.31	1.29	ND (2.5)	ND (2.5)	5.7	24.0	39.0	ND (2.5)	1.6 J 1.7	ND (2.5) ND (0.5)	ND (0.5)	ND (0.5)	ND (5.0) ND (1.0)
	May-06 Oct-06	ND (0.5) ND (0.17)	N/A 7.36	0.51 0.62	ND (0.5) 0.078J	0.41J 0.54	6.8 11.9	14.0 9.6	18.0 19.6	7.9	1.82	ND (0.064)	ND (0.074)	ND (0.092)	IND (0 ne)
	May-07	ND (0.17)	7.39	0.17	ND (0.48)	0.34 0.2J	5.2	9.4	11.2	4.6	1.20	ND (0.064)	ND (0,074) ND (0,074)	ND (0.092)	ND (O oco
	(1,100 t v)	1 112 (0.17)	1	1 0.17	110 (0.70)) 0.23) 5.2) /	1		2,00	ND (0.064)	PARTY CONTRACTOR	EXTENT CO.	1101-1111

Monitoring Well	Date	TPH (mg/L)	pH units	MBAS (mg/L)	1,1-DCA (ug/L)	I,I-DCE (ug/L)	PCE (ug/L)	Carbon Tetrachloride (ug/L)	Chloroform (ug/L)	1,2 DCA (ug/L)	TCE (ug/L)	Benzene (ng/L)	Efbylbeszene	Toluene	Total Xylenes (ug/L)
	Apr-91		7.44	ND (0. I)				NA	NA	NA	NA	ND (2)	(ug/£) 4.7	(ug/L) 6.1	ND (4)
	Jan-94		6.9	ND (0.5)				11	11	24	2.6	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.5)
	Apr-94		7.5	0.53	ND (0.5)		ND (0.5)	8.9 ⁴	11	494	1.6	ND (0.5)	1.6	4.7	3.76
	Jul-94 Nov-94		7.4 6.8	1.2 1.5	ND (0.5) ND (25)		ND (0.5) ND (25)	7.4 51	6.6 44	54 1,100	1.6 ND (25)	ND (0.5)	9.2	22	27.5
	Jun-95	ND (0.5)	7.4	0.17	ND (0.5)		ND (0.5)	4.6	6.6	68 4	ND (0.5)	ND (25) ND (5)	ND (25)	420 230	100 520
	Sep-95	ND (0.5)	7.4	0.5	ND (0.5)	ND (0.5)	0.61	8.8	8.8	65	2.6	ND (0.5)	200 30	26	32.2
	Dec-95	ND (0.5)	7.6	3.8	ND (5)	ND (5)	ND (5)	18	11	310	ND (5)	ND (5)	· 51	7.0	32
	Mar-96 Jan-97	ND (0.5) ND (0.5)	7.6 7.22	2.1 8.1	ND (0.5) ND (5)	ND (0.5) ND (5)	3.3 ND (5)	1.9 34	18 38	110 510	0.97 ND (5)	0.8 1.8	26	90	119
	Apr-97	0.25	7.67	2.5	ND (5)	ND (5)	ND (5)	13	14	240	ND (5)	ND (5)	ND (0.5) 18	ND (0.5) 6.9	4.3 150
	Oct-97	ND (0.05)	7.24	0.61	ND (0.5)	ND (0.5)	0.74	10	12	210	0.77	0.54	0.99	0.67	3.1
	May-98 Nov-98	ND (0.05) ND (0.05)	7.46 7.5	0.54 0.76	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	1.5 1.3	6.6 1.9	7.6 2.3	26 `2 5	2.5 2.0	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.5)
	Aug-99	ND (0.05)	7.41	0.47	ND (0.5)	ND (0.5)	ND (0.5)	6.1	6.7	24.8	1.0	ND (0.5) ND (0.5)	0.59 ND (0.5)	ND (0.5) ND (0.5)	4.4 ND (1.0)
MW-7	Dec-99	ND (0.5)	7.34	0.98	ND (0.5)	ND (0.5)	ND (0.5)	4.3	8.4	42.1	1.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	Apr-00 Oct-00	ND (0.5) ND (0.5)	7.35 7.49	1.18 3.12	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	1.1 0.7	11.2 1.7	19.9 1.2	60.3 17.1	2.6 1.8	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	Apr-01	ND (0.5)	7.48	0.26	ND (0.5)	ND (0.5)	0.9	0.7	0.7	18.7	2.0	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (1.0) ND (1.0)
	Oct-01	ND (0.5)	7.36	2.01	ND (0.5)	ND (0.5)	0.9	1.2	2.4	11.9	1.2	1.4	ND (0.5)	ND (0.5)	ND (1.0)
	Apr-02 Oct-02	ND (0.5)	7.35 7.35	1.25 1.84	ND (1.0)	ND (1.0)	ND (1.0)	1.7	4.7 8.0	41.1 66.0	1.3	ND (1.0)	ND (1.0)	ND (1.0)	ND (2.0)
	Apr-03	ND (0.5) ND (0.5)	7.37	0.72	ND (2.5) ND (0.5)	ND (2.5) ND (0.5)	ND (2.5) 0.9	3 2.8	5.2	ND (0.5)	ND (2.5) 2.8	ND (2.5) ND (0.5)	ND (2.5) ND (0.5)	ND (2.5) ND (0.5)	ND (5) ND (1.0)
	Oct-03	ND (0.5)	7.38	1.45	ND (0.5)	ND (0.5)	0.65	0.5	3.27	33.9	1.23	4.7J	.34J	6.52	10.3
	May-04	ND (0.5)	7.36	0.23	ND (0.5)	ND (0.5)	0.9	1.8	3.10	8.8	1.6	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	Oct-04 Apr-05	ND (0.5) ND (0.5)	7.47 7.42	0.282 0.33	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	1.6 0.9	0.7 ND (0.5)	2.3 ND (0.5)	1.0 6.4	5.6 2.3	ND (0.5) ND (0.5)	ND (0.5) ND(0.5)	ND (0.5)	ND (1.0) ND (1.0)
	Nov-05	ND (0.5)	7.29	1.85	ND (0.5)	ND (2.5)	0.8 J	0.6	2.0 J	109	1.5 J	ND (0.5) ND (2.5)	ND (2.5)	ND (0.5) ND (2.5)	2.8 J
	May-06	ND (0.5)	N/A	0.63	ND (2.5)	ND (2.5)	0.74J	ND (2.5)	1.33	47.6	I.8J	ND (2.5)	ND (2.5)	ND (2.5)	ND (5.0)
	Oct-06 May-07	ND (0.17) ND (0.17)	7.36 7.38	ND (0.05) 0.34	ND (0.24) ND (0.48)	ND (0.23) ND (0.46)	0.68J 1.0	ND (0.31) 0.10J	1.2J 0.5	62.0 34.1	1.3J 1.2	ND (0.32) 0.6	ND (0.37) ND (0.074)	ND (0.46) ND (0.092)	ND (0.3)
	Oct-07	ND (0.17)	7.45	0.54	ND (0.48)		0.9	0.103	0.9	36.7	1.2	ND (0.064)			ND (0.059) ND (0.059)
	Apr-91		7.2	ND (0.1)				NA	NA	NA	NA	ND (50)	180	550	740
	Jan-94		7.4	0.5	NID (6)		NID (6)	ND (130)	ND (130)	ND (130) ND (5)	ND (130)	ND (130)	3,400	12,000	21,000
	Apr-94 Jul-94		7.8 7.9	0.43	ND (5) ND (5)		ND (5) ND (5)	ND (5)	10 21	22	ND (5) 3.0	ND (250) 39	3,400 2400 ⁴	7,600 2800 ⁴	12,400 10000 ⁴
	Nov-94		7.5	0.86	ND (1,000)		ND (1,000)	ND (1,000)	ND (1,000)	ND (1,000)	ND (1,000)	ND (1,000)	6,200	27,000	23,000
	Jun-95	ND (0.5)	7.5	0.3	ND (5)		ND (5)	ND (5)	25	ND (5)	ND (5)	ND (50)	400	160	5,900
	Sep-95	ND (0.5)	7.6 7.9	2.8 1.8	ND (5)	ND (5)	ND (5)	ND (5) 22	17 51	ND (5) 7.5	ND (5) ND (5)	ND (500) ND (500)	2,000 ND (500)	1,500 ND (500)	8,300 7,800
	Dec-95 Mar-96	ND (0.5) ND (0.5)	7.6	1.8	ND (5) ND (0.5)	ND (5) ND (0.5)	ND (5) 9.4	5.8	24	2.4	0.76	ND (500)	400	13	1,470
	Jan-97	0.65	7.41	0.88	ND (5)	ND (5)	ND (5)	ND (5)	11	ND (5)	ND (5)	ND (50)	2,300	ND (50)	3,600
	Apr-97	0.30	7.37	2.7	ND (1)	ND (1)	ND (1)	ND (1)	3.8	ND (1)	ND (1)	6.5	530 4,800	17 290	ND (750)
	Oct-97 May-98	ND (0.05) ND (0.05)	7.19 7.38	0.12 0.91	ND (50) ND (0.5)	ND (50) ND (0.5)	ND (50) 1.6	ND (50) 160	ND (50) 51	ND (50) ND (0.5)	ND (50) 2.2	ND (50) ND (0.5)	72	39	14,000 260
	Nov-98	6.5	7.9	1.9	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	30	2,700	160	7,300
	Aug-99	ND (0.5)	7.33	0.75	ND (2.5)	ND (2.5)	ND (2.5)	97	49	7.5	ND (2.5)	ND (2.5)	23 695	25 775	60
MW-8	Dec-99 Apr-00	ND (0.5) ND (0.5)	7.40	3.02 0.59	ND (25) ND (0.5)	ND (25) ND (0.5)	140 1.5	ND (25) 17.4	ND (25) 26.2	65.0 11.4	ND (25) 2.5	ND (25) ND (0.5)	12.8	75.4	4,180 63
	Oct-00	ND (0.5)	7.41	ND (0.05)	ND (0.5)	ND (0.5)	1.2	22.2	13.3	3.0	1.2	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	A OT	ND (0.5)	715	0.24	ND (0.5)	ND (0.5)	0.9	16.7	10.9	3.4	1.1	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0) 22.9
	Apr-01		7.45	1			I					MD (0.6)			
	Oct-01	ND (0.5)	7.42	0.27	ND (0.5)	ND (0.5)	1	10.2	7.1	1.4	1.0 1.0	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	3.8 ND (0.5)	
	Oct-01 Apr-02	ND (0.5) ND (0.5)	ı	1	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	1 0.8	16.6	13.3	1.4 5.1 8.6	1.0 1.0 1.4	ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	3.8 ND (0.5) ND (0.5)	ND (1.0) ND (1.0)
	Oct-01 Apr-02 Oct-02 Apr-03	ND (0.5) ND (0.5) ND (0.5) ND (0.5)	7.42 7.41 7.34 7.36	0.27 0.27 0.48 0.3	ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5)	1	16.6 4.7 4.7	13.3 7.5 5.4	5.1 8.6 1.7	1.0 1.4 1.8	ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) 4.3	ND (0.5) ND (0.5) 7.5	ND (1.0) ND (1.0) 16.9
	Oct-01 Apr-02 Oct-02 Apr-03 Oct-03	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	7.42 7.41 7.34 7.36 7.39	0.27 0.27 0.48 0.3 0.47	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	0.8 0.8 0.7 0.68	16.6 4.7 4.7 2.19	13.3 7.5 5.4 6.77	5.1 8.6 1.7 7.53	1.0 1.4 1.8 1.02	ND (0.5) ND (0.5) ND (0.5) 0.52	ND (0.5) ND (0.5) 4.3 ND (0.5)	ND (0.5) ND (0.5) 7.5 6.86	ND (1.0) ND (1.0) 16.9 54.7
	Oct-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	7.42 7.41 7.34 7.36 7.39 7.32	0.27 0.27 0.48 0.3 0.47 0.48	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	1 0.8 0.8 0.7 0.68 2.6	16.6 4.7 4.7 2.19 8.0	13.3 7.5 5.4 6.77 12.1	5.1 8.6 1.7 7.53 13.20	1.0 1.4 1.8 1.02 1.30	ND (0.5) ND (0.5) ND (0.5) 0.52 ND (0.5)	ND (0.5) ND (0.5) 4.3	ND (0.5) ND (0.5) 7.5	ND (1.0) ND (1.0) 16.9 54.7 ND (1.0)
	Oct-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04 Oct-04	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	7.42 7.41 7.34 7.36 7.39	0.27 0.27 0.48 0.3 0.47	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	0.8 0.8 0.7 0.68	16.6 4.7 4.7 2.19	13.3 7.5 5.4 6.77	5.1 8.6 1.7 7.53	1.0 1.4 1.8 1.02	ND (0.5) ND (0.5) ND (0.5) 0.52 ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) 4.3 ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) 7.5 6.86 ND (0.5) ND (0.5) ND (0.5)	ND (1.0) ND (1.0) 16.9 54.7 ND (1.0) ND (1.0)
	Oct-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04 Oct-04 Apr-05 Nov-05	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	7.42 7.41 7.34 7.36 7.39 7.32 7.51 7.35 7.38	0.27 0.27 0.48 0.3 0.47 0.48 0.914 0.20 0.18	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (5.0)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	1 0.8 0.8 0.7 0.68 2.6 1.9 1.1 ND (5.0)	16.6 4.7 4.7 2.19 8.0 0.7 0.5 4.8 J	13.3 7.5 5.4 6.77 12.1 3.7 1.4 9.6	5.1 8.6 1.7 7.53 13.20 16.0 1	1.0 1.4 1.8 1.02 1.30 6.2 2.8 0.97 J	ND (0.5) ND (0.5) ND (0.5) 0.52 ND (0.5) ND (0.5) ND (0.5) ND (5.0)	ND (0.5) ND (0.5) 4.3 ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) 7.5 6.86 ND (0.5) ND (0.5) ND (0.5) 44	ND (1.0) ND (1.0) 16.9 54.7 ND (1.0) ND (1.0) 1 544
	Oct-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04 Oct-04 Apr-05 Nov-05 May-06	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	7.42 7.41 7.34 7.36 7.39 7.32 7.51 7.35 7.38 NA	0.27 0.27 0.48 0.3 0.47 0.48 0.914 0.20 0.18 0.07	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (5.0) ND (0.5)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (5.0) ND (5.5)	1 0.8 0.8 0.7 0.68 2.6 1.9 1.1 ND (5.0)	16.6 4.7 4.7 2.19 8.0 0.7 0.5 4.8 J 3.1	13.3 7.5 5.4 6.77 12.1 3.7 1.4 9.6 8.0	5.1 8.6 1.7 7.53 13.20 16.0 1 4.6 J 5.3	1.0 1.4 1.8 1.02 1.30 6.2 2.8 0.97 J 1.6	ND (0.5) ND (0.5) ND (0.5) 0.52 ND (0.5) ND (0.5) ND (0.5) ND (5.0) ND (0.5)	ND (0.5) ND (0.5) 4.3 ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (0.5) ND (0.5) 7.5 6.86 ND (0.5) ND (0.5) ND (0.5)	ND (1.0) ND (1.0) 16.9 54.7 ND (1.0) ND (1.0) 1 544 191
	Oct-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04 Oct-04 Apr-05 Nov-05	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	7.42 7.41 7.34 7.36 7.39 7.32 7.51 7.35 7.38	0.27 0.27 0.48 0.3 0.47 0.48 0.914 0.20 0.18	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (5.0)	ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (5.0) ND (0.5) ND (0.046)	1 0.8 0.8 0.7 0.68 2.6 1.9 1.1 ND (5.0) 1.2	16.6 4.7 4.7 2.19 8.0 0.7 0.5 4.8 J	13.3 7.5 5.4 6.77 12.1 3.7 1.4 9.6	5.1 8.6 1.7 7.53 13.20 16.0 1	1.0 1.4 1.8 1.02 1.30 6.2 2.8 0.97 J	ND (0.5) ND (0.5) ND (0.5) 0.52 ND (0.5) ND (0.5) ND (0.5) ND (5.0)	ND (0.5) ND (0.5) 4.3 ND (0.5) ND (0.5) ND (0.5) ND (0.5) 39 7.2	ND (0.5) ND (0.5) 7.5 6.86 ND (0.5) ND (0.5) ND (0.5) 44 9.6 4.1 0.7	ND (1.0) ND (1.0) 16.9 54.7 ND (1.0) ND (1.0) 1 544 191 73.9 58.6

N;\P\Pilof\0019.001.001\October 07 Groundwater & SVE\Report\Table 2.xls

Process Proc			TPH	рН	MBAS	l,1-DCA	L1-DCE	PCE	Carbon			TCE	Benzene	Ethylbenzene	Tolpene	Total Xylenes
Agr 2	Monitoring Well	Date						And the second second second second	(n8/F)		tig/L)					(ug/E)
Age-24	<u> </u>													2.7	- 1	
Marche 1,1		l				2.4	•				ND (10)		` ′	` '		
Novel 10								. ,	ND (2.5)	'ND (25)				1		
		1							ND (5)	ND (5)		1				
Supple S					0.01				ND (5)	ND (5)				1		
March Marc			1					. ,	8.1	65		1	i i			
		l	` ′			1			ND (5)	72		-				
App-67 NO (0.00)										ND(5)	**			1		
Cought C			1		0.19						's - 1	1	1	1	ND (0.5)	
North Nort		Oct-97	1 ' ' 1			i i	1			6		(
May-96													, , ,	L.		
			1								575 A					
MW-9		Aug-99										i	I			
Cocton Vision Cocton Vision Cocton Vision V	MW 0	Dec-99	1			· •					. 1	1	, , ,		. , ,	
Appril ND (0.5) 7.12 0.46 42.3 7.1 1.6 MD (0.5) 5.4 4.3 191 ND (0.5) ND (. IYL YV -7									1 2 2 1		i				
Octob No No No 1.724 No No No 1.724 No No No 1.724 No No No No No No No N	•	Apr-01 18								1 6 F (A)	ļ	1		• •		
App-02		Oct-01 20	1								ļ		` ' i		i	10.5
Octob Octo		Apr-02 20								1	l l				, ,	
Oct-05 Oct-		Oct-02										290	ND (5)	ND (5)	ND (5)	
May-04 ND (0.5) 7.23 0.88 13.5 1.50 1.2 ND (0.5) 1.4 16.10 79.3 ND (0.5) ND (0.5) ND (1.0)		Apr-03 20	ND (0.5)	7.25	0.83	17.4	2.4	1.4	ND (0.5)	1.4	11.3	115				
Out-Order		Oct-03 21	ND (0.5)	7.23	0.7	35.5	4.94	1.2	ND (0.5)	4.69	5.04	124	0.65	, .		
Agr-95 ND 0.53 7.07 0.59 ND 2.53 ND) 25 ()	May-04 20	ND (0.5)	7.23	0.88	13.5	1.50	1.2	ND (0.5)	1.4	16.10					
No-05 ND (0.5) N												l		, ,		
May-06-22 ND (0.5) NA ND (0.05) NO (2.5) 3.7 2.31 ND (2.5) 8.0 12.0 21.50 ND (2.5) ND (2.5) ND (2.5) ND (2.5) ND (2.5) ND (0.07) ND (0.07) ND (0.07) 7.10 ND (0.07) ND										•		i e				
Dec-06-27 ND (0.17) 7.12 0.20) '								Į.	Į.	1		l '	2.1J
My-O7 ND (0.17 7.10 ND (0.025) 38.5 3.8 1.9 ND (0.062) 5.0 8.7 13.50 1.6 ND (0.074) 0.41 1.0 ND (0.025)		Oct-06 ²³							, ,	1	1	l	1		ND (0.46)	ND (0.295)
Agr-91		May-07								1	1	135.0	1.6	ND (0.074)	0.4J	1
Jan	·	Oct-07 ²⁰	ND (0,5)	7,00	0.24	49.1	3.1	1,9J								
Apr-94				Į.			-			l .		l .		ł .	1	
Mail		1			ĺ										1	1
Nov-94 Nov-94 Nov-95 Nov-96 No		4 '				, , ,		٠.		į.			1		1	1
Sum		1 .	<u> </u>	l					, ,			1				
De-95 0.34 7.4 22 ND (50) ND (Jun-95	ND (0.5)	7.3	l	, , ,			, ,				1 ' '	2,100		
Mai-96			i						9.1	L						
		1. 18 to 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Į.				, .				1 ' '		1 .	
Apr-97 0.38			100	ļ.	1		, ,				1 '	1	1	4	1 '	•
			March 1	7.4							1		1	1	12	1
No.		The state of the s	 11. 1170 ± 4 11. 1170 ± 4 		I .								1	1	l .	i .
Aug. 99 ND (0.5) 7,32 17.3 ND (25)			and the state of the state of the state of	1	ł								1		t .	1 '
Carte Dec Spe Sp			A CAMPAGE PROPERTY OF A CAMPAGE	1 .						1	,		1	1		1
CRICO ND (50) 126 12.7 ND (50) 13 1,150 ND (5) 21 1,830 24 874 ND (5) ND	MV-10	THE TOTAL PROPERTY.			1	('								1		
1,150		Property of the second		連び投付される。	17 / L			ND (50)	ND (50)	1		ND (50)		I		1
California Cal		Apr.01		建物的有效人以及此			i e			1			1			1
13			(ND,(0.5)	7.22								1 '				1
ND (50) ND (25) ND (ND (50)				1 '				1,170	1	
ND (25) ND (THE EXPLANATION OF THE PARTY OF							ND (50)	ND (50)	3,980	ND (50)			1	
ND (100)		100	130005	7.13								1	i		1	L .
ND (50) ND (473	ND (100)	ND (100)					1			ND (100)	
25 ND (250)		1000					ND (50)		ND (50)		669	ND (50)	ND (50)			
31, 230 ND (230) ND (230) ND (250) ND (10 2 5 15							1				
12 0 4D (40) 8D (90) AD (60) 1352 821 115 3,120 ND (9.0) 2,630 ND (9.0) 1,750 ND (9.0) 1,750					4.00	ND (250)	NO (250)	ND (250)	ND (250)	451	3.630	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$						1 SID 4 0	ND GOL	AD (9.6)	JND (6.0)		3,352	8.2J	115	3,120	ND (9.0)	2,630
12500 Hard Control of the Control of					discount vol.		2.00		ND (15)			ND (4.0)		1,460 NO (18)	ND (9.0)	

TABLE 2 HISTORICAL GROUNDWATER ANALYTICAL RESULTS PILOT CHEMICAL COMPANY SANTA FE SPRINGS, CALIFORNIA

								Carbon							Total
Monitoring Well	Date	TPH (mg/L)	pH units	MBAS (mg/L)	1,1-DCA (ng/L)	I,I-DCE (ug/L)	PCE (ug/L)	Tetrachloride (ug/L)	Chloroform (ng/L)	1,2 DCA (ug/L)	TCE (ug/L)	Benzene (ng/L)	Ethylbenzene	Tolnese	Xylenes
	Apr-91	0.140.91.12.11	7.39	2.2	<u> </u>		1010009112001	NA	NA	NA	NA	ND (0.5)	(ug/L) 0.95	(ug/L)	(tig/L) 7.6
	Јап-94		7.1	1.4			1	ND (1.3)	ND (1.3)	35	3.3	ND (1.3)	ND (1.3)	ND (1.3)	ND (3.8)
	Apr-94		7.4	18	ND (0.5)		2.4	ND (0.5)	1.3	54 4	5.1	1.2	4.7	0.69	1.5
	Jul-94 Nov-94		7.3 6.9	11	ND (10) ND (2.5)		ND (10) ND (2.5)	ND (10) 2.6	ND (10) ND (2.5)	ND (10) 100	80 5.3	ND (10)	92	340	327
	Jun-95	ND (0.5)	7.3	1 1	ND (5)		ND (2.3)	ND (5)	ND (5)	12	3.3 ND (5)	9.6 ND (0.5)	4.1	10	7.5 11
	Sep-95	ND (0.5)	7.1	8.3	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	83	ND (50)	ND (5)	ND (0.5) 110	ND (0.5) 530	353
	Dec-95	0.68	7.2	23	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	90	ND (5)	ND (5)	18	ND (5)	21
	Mar-96 Jan-97	0.8 0.62	7.2 7.14	24 9.8	ND (5)	ND (5)	6.9	ND (5) ND (5)	ND (5)	73 38	ND (5)	ND (5)	47	25	83
	Apr-97	0.52	7.14	7.9	ND (5) ND (1)	ND (5) ND (1)	5.2 3.6	ND (3)	ND (5) ND (1)	30	ND (5) 3.3	ND (5) ND (0.5)	ND (5)	ND (5)	ND (5)
	Oct-97	ND (0.05)	6.82	9.7	ND (0.5)	ND (0.5)	4.3	ND (0.5)	ND (0.5)	28	5.2	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (1.5) ND (1.5)
	May-98 13	ND (0.05)	6.95	7.9	ND (0.5)	ND (0.5)	4	ND (0.5)	ND (0.5)	ND (0.5)	3.9	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.5)
	Nov-98	ND (0.05)	7.1	21	ND (0.5)	ND (0.5)	3.9	ND (0.5)	ND (0.5)	27	5.2	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.5)
	Aug-99	ND (0.5)	6.97	11.4	ND (0.5)	ND (0.5)	2.7	ND (0.5)	ND (0.5)	20.2	4.2	3.8	ND (0.5)	ND (0.5)	2.3
MW-11	Dec-99 Apr-00	ND (0.5) ND (0.5)	7.07 7.13	3.77 1.43	ND (0.5) 26	ND (0.5) ND (0.5)	2.4 4	ND (0.5) ND (0.5)	ND (0.5) 0.5	27.4 ND (0.5)	3.6 3.3	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	Oct-00	ND (0.5)	7.13	3.96	ND (0.5)	ND (0.5)	3.9	ND (0.5)	ND (0.5)	13	1.8	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5)	ND (1.0) ND (1.0)
	Apr-01	ND (0.5)	7.16	4.95	0.3J	0.8	8.1	ND (0.5)	0.7	25.5	3.1	ND (0.5)	ND (0.5)	ND (0.5) ND (0.5)	ND (1.0)
	Oct-01	ND (0.5)	7.09	2.12	ND (0.5)	3.2	17.7	ND (0.5)	1.5	4.3	3.3	0.5	ND (0.5)	ND (0.5)	ND (1.0)
	Apr-02	ND (0.5)	7.16	7.22	ND (0.5)	1.7	14.7	ND (0.5)	0.6	14.3	3.2	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	Oct-02	ND (0.5)	7.12	9.41 6.08	ND (0.5)	2.9	21.4	ND (0.5)	0.7	13.5	3.9	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	Apr-03 Oct-03	ND (0.5) ND (0.5)	7.18 7.20	18.3	ND (0.5) .125J	ND (0.5) 1.3	10.4 12.9	ND (0.5) ND (0.5)	ND (0.5) 2.76	5.3 14.5	2.3 1,89	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5)	1.1 ND (1.0)
	May-04	ND (0.5)	7.22	4.19	ND (0.5)	1.0	14.9	ND (0.5)	2.5	9.0	7.0	ND (0.5)	ND (0.5)	ND (0.5) ND (0.5)	ND (1.0)
	Oct-04	ND (0.5)	7.31	0.886	ND (0.5)	1.3	13.0	0.5	1.0	1.9	5.7	ND (0.5)	ND (0.5)	ND (0.5)	ND (1.0)
	Apr-05	ND (0.5)	7.35	1.91	ND (0.5)	ND (0.5)	12.5	ND (0.5)	1.2	ND (0.5)	7.3	ND (0.5)	ND (0.5)	0.9	ND (1.0)
	Nov-05	ND (0.5)	7.25	4.23	0.26	1.8	11.8	ND (0.5)	0.9	17	3.1	0.24 J	ND (0.5)	0.36 J	0.7 J
	May-06 Oct-06	ND (0.5) ND (0.17)	N/A 7.26	1.56 7.28	ND (0.5) 0.159J	0.2J 0.52	3.2 8.5	ND (0.5) ND (0.062)	0.15J 0.114J	1.5 9,97	1.8 2.35	ND (0.5) ND (0.064)	ND (0.5) ND (0.074)	ND (0.5) 0.80	ND (1.0) 0.97J
	May-07	ND (0.17)	7.27	2.39	0.13J	0.92	9.9	ND (0.062)	0.7	11.20	1.70	ND (0.064)	ND (0.074)	ND (0.092)	ND (0.059)
	Oct-07	ND (0.5)	7.23	2.44	0.271	1.80	18.7	0.36J	3.4	12.40	3,10	ND (8.064)	ND (0.074)	ND (0.092)	
DUP-1(MW-7)	Apr-97	NA	NA .	NA	ND (2.5)	ND (2.5)	ND (2.5)	13	12	200	ND (2.5)	ND (2.5)	22	8.3	150
DUP-2(MW-3) DUP-(MW-4)	Apr-97 Oct-97	NA NA	NA NA	NA NA	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	1.2	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	16 23	3.1	ND (0.5)	8.5	4.6	9.6 2 9
DUP-(MW-7)	1		1417		110 (0.5)	110 (0.5)	1	110 (0.5)				I ND (0.5)	1 37	20	
	{ Uct-9/	NA	NA	NA	ND (0.5)	ND (0.5)	0,64	8.5	12	210	3.3 0.68	ND (0.5) 0.54	32 1.1	20 0.86	3.7
· MW-98 14	Oct-97 Nov-98) I	NA NA	NA NA	ND (0.5) ND (250)	ND (0.5) ND (250)	0.64 ND (250)	8.5 ND (250)			1	ND (0.5) 0.54 ND (250)		<u>.</u> 1	
MW-98 ¹⁵	1	NA		ì	ND (0.5) ND (250) 5.6				12	210	0.68	0.54	1.1	0.86	3.7
MW-99 ¹⁵ DUP-1(MW-3)	Nov-98 Nov-98 Aug-99	NA NA NA NA	NA NA NA	NA NA NA	ND (250) 5.6 ND (5)	ND (250) ND (2.5) ND (5)	ND (250) ND (2.5) ND (5)	ND (250) ND (2.5) ND (5)	12 ND (250) ND (2.5) ND (5)	210 3,300 ND (2.5) 70	0.68 ND (250) ND (2.5) ND (5)	0.54 ND (250) ND (2.5) ND (5)	1,1 7,100 240 3,450	0.86 130,000 47 6,800	3.7 47,000 95 11,600
MW-99 ¹⁵ DUP-1(MW-3) DUP-2(MW-6)	Nov-98 Nov-98 Aug-99 Aug-99	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	ND (250) 5.6 ND (5) ND (5)	ND (250) ND (2.5) ND (5) ND (5)	ND (250) ND (2.5) ND (5) ND (5)	ND (250) ND (2.5) ND (5) 201	12 ND (250) ND (2.5) ND (5) 145	210 3,300 ND (2.5) 70 35	0.68 ND (250) ND (2.5) ND (5) ND (5)	0.54 ND (250) ND (2.5) ND (5) ND (5)	1.1 7,100 240 3,450 ND (5)	0.86 130,000 47 6,800 ND (5)	3.7 47,000 95 11,600 ND (10)
MW-99 ¹⁵ DUP-1(MW-3) DUP-2(MW-6) DUP-1(MW-7)	Nov-98 Nov-98 Aug-99 Aug-99 Dec-99	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	ND (250) 5.6 ND (5) ND (5) ND (0.5)	ND (2.50) ND (2.5) ND (5) ND (5) ND (0.5)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5)	ND (250) ND (2.5) ND (5) 201 4.1	12 ND (250) ND (2.5) ND (5) 145 8.1	210 3,300 ND (2.5) 70 35 40.7	0.68 ND (250) ND (2.5) ND (5) ND (5)	0.54 ND (250) ND (2.5) ND (5) ND (5) ND (0.5)	1.1 7,100 240 3,450 ND (5) ND (0.5)	0.86 130,000 47 6,800 ND (5) ND (0.5)	3.7 47,000 95 11,600 ND (10) ND (1.0)
MW-99 ¹⁵ DUP-1(MW-3) DUP-2(MW-6) DUP-1(MW-7) DUP-2(MW-1)	Nov-98 Nov-98 Aug-99 Aug-99 Dec-99	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	ND (250) 5.6 ND (5) ND (5) ND (0.5) ND (250)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250)	ND (250) ND (2.5) ND (5) 201 4.1 ND (250)	12 ND (250) ND (2.5) ND (5) 145 8.1 ND (250)	210 3,300 ND (2.5) 70 35 40.7 1,500	0.68 ND (250) ND (2.5) ND (5) ND (5) 1.5 ND (250)	0.54 ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250)	1.1 7,100 240 3,450 ND (5)	0.86 130,000 47 6,800 ND (5)	3.7 47,000 95 11,600 ND (10) ND (1.0) 160,000
MW-99 ¹⁵ DUP-1(MW-3) DUP-2(MW-6) DUP-1(MW-7)	Nov-98 Nov-98 Aug-99 Aug-99 Dec-99	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	ND (250) 5.6 ND (5) ND (5) ND (0.5)	ND (2.50) ND (2.5) ND (5) ND (5) ND (0.5)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5)	ND (250) ND (2.5) ND (5) 201 4.1	12 ND (250) ND (2.5) ND (5) 145 8.1	210 3,300 ND (2.5) 70 35 40.7	0.68 ND (250) ND (2.5) ND (5) ND (5)	0.54 ND (250) ND (2.5) ND (5) ND (5) ND (0.5)	1.1 7,100 240 3,450 ND (5) ND (0.5) 32,800	0.86 130,000 47 6,800 ND (5) ND (0.5) 122,000	3.7 47,000 95 11,600 ND (10) ND (1.0) 160,000 ND (10) ND (1.0)
MW-99 15 DUP-1(MW-3) DUP-2(MW-6) DUP-1(MW-7) DUP-2(MW-1) DUP-1(MW-9) DUP-2(MW-11) DUP-1(MW-10)	Nov-98 Nov-98 Aug-99 Aug-99 Dec-99 Dec-99 Apr-00 Apr-00 Oct-00	NA	NA NA NA NA NA NA	NA NA NA NA NA NA NA	ND (250) 5.6 ND (5) ND (5) ND (0.5) ND (250) 64 19.3 ND (5.0)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 11 ND (0.5) ND (5.0)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 13 2.8 ND (5.0)	ND (250) ND (2.5) ND (5) 201 4.1 ND (250) ND (5.0) ND (0.5) ND (5.0)	12 ND (250) ND (2.5) ND (5) 145 8.1 ND (250) 10 ND (0.5)	210 3,300 ND (2.5) 70 35 40.7 1,500 20 ND (0.5) 1,640	0.68 ND (250) ND (2.5) ND (5) ND (5) 1.5 ND (250) 488 2.4 ND (5.0)	0.54 ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) ND (5.0) ND (0.5)	1.1 7,100 240 3,450 ND (5) ND (0.5) 32,800 ND (5.0) ND (0.5) 1,510	0.86 130,000 47 6,800 ND (5) ND (0.5) 122,000 ND (5.0) ND (0.5)	3.7 47,000 95 11,600 ND (10) ND (1.0) 160,000 ND (10) ND (1.0) 725
MW-99 15 DUP-1(MW-3) DUP-2(MW-6) DUP-1(MW-7) DUP-2(MW-1) DUP-1(MW-9) DUP-2(MW-11) DUP-1(MW-10) DUP-2(MW-8)	Nov-98 Nov-98 Aug-99 Aug-99 Dec-99 Dec-99 Apr-00 Apr-00 Oct-00	NA	NA	NA	ND (250) 5.6 ND (5) ND (5) ND (0.5) ND (250) 64 19.3 ND (5.0) ND (0.5)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 11 ND (0.5) ND (5.0) ND (5.0)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 13 2.8 ND (5.0) 1.2	ND (250) ND (2.5) ND (5) 201 4.1 ND (250) ND (5.0) ND (0.5) ND (5.0) 22.3	12 ND (250) ND (2.5) ND (5) 145 8.1 ND (250) 10 ND (0.5) 11	210 3,300 ND (2.5) 70 35 40.7 1,500 20 ND (0.5) 1,640 3.1	0.68 ND (250) ND (2.5) ND (5) ND (5) 1.5 ND (250) 488 2.4 ND (5.0) 1.2	0.54 ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) ND (5.0) ND (0.5) 18 ND (0.5)	1.1 7,100 240 3,450 ND (5) ND (0.5) 32,800 ND (5.0) ND (0.5) 1,510 ND (0.5)	0.86 130,000 47 6,800 ND (5) ND (0.5) 122,000 ND (5.0) ND (0.5) 25 ND (0.5)	3.7 47,000 95 11,600 ND (10) ND (1.0) 160,000 ND (10) ND (1.0) 725 ND (1.0)
MW-99 15 DUP-1(MW-3) DUP-2(MW-6) DUP-1(MW-7) DUP-2(MW-1) DUP-1(MW-9) DUP-2(MW-11) DUP-1(MW-10) DUP-2(MW-8) DUP-1(MW-1)	Nov-98 Nov-98 Aug-99 Aug-99 Dec-99 Dec-99 Apr-00 Apr-00 Oct-00 Oct-00 Apr-01	NA	NA	NA	ND (250) 5.6 ND (5) ND (5) ND (0.5) ND (250) 64 19.3 ND (5.0) ND (0.5) ND (500)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 11 ND (0.5) ND (5.0) ND (5.0) ND (5.0)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 13 2.8 ND (5.0) 1.2 ND (500)	ND (250) ND (2.5) ND (5) 201 4.1 ND (250) ND (5.0) ND (0.5) ND (5.0) 22.3 ND (500)	12 ND (250) ND (2.5) ND (5) 145 8.1 ND (250) 10 ND (0.5) 11 13.9 109J	210 3,300 ND (2.5) 70 35 40.7 1,500 20 ND (0.5) 1,640 3.1 580	0.68 ND (250) ND (2.5) ND (5) ND (5) 1.5 ND (250) 488 2.4 ND (5.0) 1.2 ND (500)	0.54 ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) ND (5.0) ND (0.5) 18 ND (0.5) ND (500)	1.1 7,100 240 3,450 ND (5) ND (0.5) 32,800 ND (5.0) ND (0.5) 1,510 ND (0.5) 19,900	0.86 130,000 47 6,800 ND (5) ND (0.5) 122,000 ND (5.0) ND (0.5) 25 ND (0.5) 64,100	3.7 47,000 95 11,600 ND (10) ND (1.0) 160,000 ND (10) ND (1.0) 725 ND (1.0) 66,200
MW-99 15 DUP-1(MW-3) DUP-2(MW-6) DUP-1(MW-7) DUP-2(MW-1) DUP-1(MW-9) DUP-2(MW-11) DUP-1(MW-10) DUP-2(MW-8) DUP-1(MW-1) DUP-2(MW-1)	Nov-98 Nov-98 Aug-99 Aug-99 Dec-99 Dec-99 Apr-00 Apr-00 Oct-00 Oct-00 Apr-01 Apr-01	NA	NA N	NA	ND (250) 5.6 ND (5) ND (5) ND (0.5) ND (250) 64 19.3 ND (5.0) ND (0.5) ND (500) ND (500) ND (500)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 11 ND (0.5) ND (5.0) ND (5.0) ND (5.0) ND (500) ND (500)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 13 2.8 ND (5.0) 1.2 ND (500) ND (500)	ND (250) ND (2.5) ND (5) 201 4.1 ND (250) ND (5.0) ND (5.0) ND (5.0) 22.3 ND (500) ND (50)	12 ND (250) ND (2.5) ND (5) 145 8.1 ND (250) 10 ND (0.5) 11 13.9 109J ND (50)	210 3,300 ND (2.5) 70 35 40.7 1,500 20 ND (0.5) 1,640 3.1 580 58.0	0.68 ND (250) ND (2.5) ND (5) ND (5) 1.5 ND (250) 488 2.4 ND (5.0) 1.2 ND (500) ND (50)	0.54 ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) ND (5.0) ND (0.5) 18 ND (0.5)	1.1 7,100 240 3,450 ND (5) ND (0.5) 32,800 ND (5.0) ND (0.5) 1,510 ND (0.5)	0.86 130,000 47 6,800 ND (5) ND (0.5) 122,000 ND (5.0) ND (0.5) 25 ND (0.5)	3.7 47,000 95 11,600 ND (10) ND (1.0) 160,000 ND (10) ND (1.0) 725 ND (1.0) 66,200 11,640
MW-99 15 DUP-1(MW-3) DUP-2(MW-6) DUP-1(MW-7) DUP-2(MW-1) DUP-1(MW-9) DUP-2(MW-11) DUP-1(MW-10) DUP-2(MW-8) DUP-1(MW-1) DUP-2(MW-3) DUP-1(MW-3) DUP-1(MW-4)	Nov-98 Nov-98 Aug-99 Aug-99 Dec-99 Dec-99 Apr-00 Apr-00 Oct-00 Oct-00 Apr-01	NA	NA	NA	ND (250) 5.6 ND (5) ND (5) ND (0.5) ND (250) 64 19.3 ND (5.0) ND (0.5) ND (500) ND (500) ND (50) ND (50)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 11 ND (0.5) ND (5.0) ND (5.0) ND (5.0)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 13 2.8 ND (5.0) 1.2 ND (500)	ND (250) ND (2.5) ND (5) 201 4.1 ND (250) ND (5.0) ND (0.5) ND (5.0) 22.3 ND (500)	12 ND (250) ND (2.5) ND (5) 145 8.1 ND (250) 10 ND (0.5) 11 13.9 109J	210 3,300 ND (2.5) 70 35 40.7 1,500 20 ND (0.5) 1,640 3.1 580	0.68 ND (250) ND (2.5) ND (5) ND (5) 1.5 ND (250) 488 2.4 ND (5.0) 1.2 ND (500)	0.54 ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) ND (5.0) ND (0.5) 18 ND (0.5) ND (500) ND (500)	1.1 7,100 240 3,450 ND (5) ND (0.5) 32,800 ND (5.0) ND (0.5) 1,510 ND (0.5) 19,900 4,580 ND (0.5) ND (0.5)	0.86 130,000 47 6,800 ND (5) ND (0.5) 122,000 ND (5.0) ND (0.5) 25 ND (0.5) 64,100 6,990	3.7 47,000 95 11,600 ND (10) ND (1.0) 160,000 ND (10) ND (1.0) 725 ND (1.0) 66,200
MW-99 15 DUP-1(MW-3) DUP-2(MW-6) DUP-1(MW-7) DUP-2(MW-1) DUP-1(MW-9) DUP-2(MW-11) DUP-1(MW-10) DUP-2(MW-8) DUP-1(MW-1) DUP-2(MW-1)	Nov-98 Nov-98 Aug-99 Aug-99 Dec-99 Dec-99 Apr-00 Oct-00 Oct-00 Apr-01 Apr-01 Apr-02	NA N	NA N	NA	ND (250) 5.6 ND (5) ND (5) ND (0.5) ND (250) 64 19.3 ND (5.0) ND (0.5) ND (500) ND (500) ND (500)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 11 ND (0.5) ND (5.0) ND (5.0) ND (500) ND (500) ND (500) ND (50) ND (50) ND (50)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 13 2.8 ND (5.0) 1.2 ND (500) ND (50) 0.7	ND (250) ND (2.5) ND (5) 201 4.1 ND (250) ND (5.0) ND (5.0) ND (5.0) 22.3 ND (500) ND (50) ND (50) ND (50)	12 ND (250) ND (2.5) ND (5) 145 8.1 ND (250) 10 ND (0.5) 11 13.9 109J ND (50) ND (0.5)	210 3,300 ND (2.5) 70 35 40.7 1,500 20 ND (0.5) 1,640 3.1 580 58.0 2.0	0.68 ND (250) ND (2.5) ND (5) ND (5) 1.5 ND (250) 488 2.4 ND (5.0) 1.2 ND (500) ND (50) ND (50) ND (50)	0.54 ND (250) ND (2.5) ND (5) ND (5) ND (250) ND (250) ND (250) ND (0.5) 18 ND (0.5) ND (500) ND (500) ND (500) ND (50) ND (50) ND (50) ND (50) ND (5.5)	1.1 7,100 240 3,450 ND (5) ND (0.5) 32,800 ND (5.0) ND (0.5) 1,510 ND (0.5) 19,900 4,580 ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	0.86 130,000 47 6,800 ND (5) ND (0.5) 122,000 ND (5.0) ND (0.5) 25 ND (0.5) 64,100 6,990 ND (0.5) ND (0.5) ND (0.5)	3.7 47,000 95 11,600 ND (10) ND (1.0) 160,000 ND (10) ND (1.0) 725 ND (1.0) 66,200 11,640 ND (1.0) ND (5) ND (1.0)
MW-99 15 DUP-1(MW-3) DUP-2(MW-6) DUP-1(MW-7) DUP-2(MW-1) DUP-1(MW-9) DUP-2(MW-11) DUP-1(MW-10) DUP-2(MW-8) DUP-1(MW-1) DUP-2(MW-3) DUP-1(MW-4) DUP-1 (MW-6) DUP-1 (MW-9) DUP-1 (MW-9)	Nov-98 Nov-98 Aug-99 Aug-99 Dec-99 Dec-99 Apr-00 Apr-00 Oct-00 Oct-01 Apr-01 Apr-01 Apr-02 Oct-02 Apr-03 Oct-03	NA N	NA N	NA N	ND (250) 5.6 ND (5) ND (5) ND (0.5) ND (250) 64 19.3 ND (5.0) ND (5.0) ND (500) ND (500) ND (50) ND (2.5) ND (2.5) ND (2.5) ND (2.5)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (5.0)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 13 2.8 ND (5.0) 1.2 ND (500) ND (50) 0.7 ND (2.5) 1.2 0.61	ND (250) ND (2.5) ND (5) 201 4.1 ND (250) ND (5.0) ND (5.0) ND (5.0) 22.3 ND (500) ND (50) ND (50) ND (50) ND (50) ND (50) ND (50) ND (0.5)	12 ND (250) ND (2.5) ND (5) 145 8.1 ND (250) 10 ND (0.5) 11 13.9 109J ND (50) ND (0.5) 47 0.5 .34J	210 3,300 ND (2.5) 70 35 40.7 1,500 20 ND (0.5) 1,640 3.1 580 58.0 2.0 8.0 5.5 20.2	0.68 ND (250) ND (2.5) ND (5) ND (5) 1.5 ND (250) 488 2.4 ND (5.0) 1.2 ND (500) ND (50) ND (50) ND (0.5) ND (2.5) 75.4 1.04	0.54 ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) ND (5.0) ND (0.5) 18 ND (0.5) ND (500) ND (500) ND (50) ND (50,5) ND (50,5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	1.1 7,100 240 3,450 ND (5) ND (0.5) 32,800 ND (5.0) ND (0.5) 1,510 ND (0.5) 19,900 4,580 ND (0.5) ND (2.5) ND (2.5) ND (2.5)	0.86 130,000 47 6,800 ND (5) ND (0.5) 122,000 ND (5.0) ND (0.5) 25 ND (0.5) 64,100 6,990 ND (0.5) ND (2.5) ND (0.5)	3.7 47,000 95 11,600 ND (10) ND (1.0) 160,000 ND (1.0) 725 ND (1.0) 66,200 11,640 ND (1.0) ND (5) ND (1.0) 1.42
MW-99 15 DUP-1(MW-3) DUP-2(MW-6) DUP-1(MW-7) DUP-2(MW-1) DUP-1(MW-9) DUP-2(MW-11) DUP-1(MW-10) DUP-2(MW-8) DUP-1(MW-1) DUP-2(MW-3) DUP-1(MW-4) DUP-1 (MW-6) DUP-1 (MW-9) DUP-1 (MW-4) DUP-1 (MW-4)	Nov-98 Nov-98 Aug-99 Aug-99 Dec-99 Dec-99 Apr-00 Apr-00 Oct-00 Oct-01 Apr-01 Apr-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04	NA N	NA N	NA N	ND (250) 5.6 ND (5) ND (5) ND (0.5) ND (250) 64 19.3 ND (5.0) ND (5.0) ND (500) ND (500) ND (50) ND (2.5) ND (2.5) 8.5 ND (0.5) ND (0.5)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (0.5) ND (0.5) ND (5.0)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 13 2.8 ND (5.0) 1.2 ND (500) ND (50) 0.7 ND (2.5) 1.2 0.61 2.7	ND (250) ND (2.5) ND (5) 201 4.1 ND (250) ND (5.0) ND (5.0) 22.3 ND (500) ND (50) ND (50) ND (50) ND (0.5) 58 58 ND (0.5) 8.2	12 ND (250) ND (2.5) ND (5) 145 8.1 ND (250) 10 ND (0.5) 11 13.9 109J ND (50) ND (0.5) 47 0.5 .34J 15.2	210 3,300 ND (2.5) 70 35 40.7 1,500 20 ND (0.5) 1,640 3.1 580 58.0 2.0 8.0 5.5 20.2 17.6	0.68 ND (250) ND (2.5) ND (5) ND (5) 1.5 ND (250) 488 2.4 ND (5.0) 1.2 ND (500) ND (50) ND (0.5) ND (2.5) 75.4 1.04 1.4	0.54 ND (250) ND (2.5) ND (5) ND (5) ND (5,0) ND (5,0) ND (0.5) 18 ND (0.5) ND (500) ND (500) ND (50) ND (50,0) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	1.1 7,100 240 3,450 ND (5) ND (0.5) 32,800 ND (5.0) ND (0.5) 1,510 ND (0.5) 19,900 4,580 ND (0.5)	0.86 130,000 47 6,800 ND (5) ND (0.5) 122,000 ND (5.0) ND (0.5) 25 ND (0.5) 64,100 6,990 ND (0.5) ND (2.5) ND (0.5) ND (0.5)	3.7 47,000 95 11,600 ND (10) ND (1.0) 160,000 ND (1.0) 725 ND (1.0) 66,200 11,640 ND (1.0) ND (5) ND (1.0) 1.42 ND (1.0)
MW-99 15 DUP-1(MW-3) DUP-2(MW-6) DUP-1(MW-7) DUP-2(MW-1) DUP-1(MW-9) DUP-2(MW-11) DUP-1(MW-10) DUP-2(MW-8) DUP-1(MW-1) DUP-2(MW-3) DUP-1(MW-4) DUP-1 (MW-6) DUP-1 (MW-9) DUP-1 (MW-4) DUP-1 (MW-4) DUP-1 (MW-4) DUP-1 (MW-4)	Nov-98 Nov-98 Aug-99 Aug-99 Dec-99 Apr-00 Apr-00 Oct-00 Oct-01 Apr-01 Apr-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04 Oct-04	NA N	NA N	NA N	ND (250) 5.6 ND (5) ND (5) ND (0.5) ND (250) 64 19.3 ND (5.0) ND (5.0) ND (500) ND (500) ND (50) ND (2.5) ND (2.5) ND (2.5) ND (0.5) ND (0.5) ND (0.5)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (0.5) ND (0.5) ND (5.0)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 13 2.8 ND (5.0) 1.2 ND (500) ND (50) 0.7 ND (2.5) 1.2 0.61 2.7 1.8	ND (250) ND (2.5) ND (5) 201 4.1 ND (250) ND (5.0) ND (5.0) ND (5.0) 22.3 ND (500) ND (50) ND (50) ND (0.5) 58 58 ND (0.5) 8.2 ND (0.5)	12 ND (250) ND (2.5) ND (5) 145 8.1 ND (250) 10 ND (0.5) 11 13.9 109J ND (50) ND (0.5) 47 0.5 .34J 15.2 ND (0.5)	210 3,300 ND (2.5) 70 35 40.7 1,500 20 ND (0.5) 1,640 3.1 580 58.0 2.0 8.0 5.5 20.2 17.6 5.4	0.68 ND (250) ND (2.5) ND (5) ND (5) 1.5 ND (250) 488 2.4 ND (5.0) 1.2 ND (500) ND (50) ND (0.5) ND (2.5) 75.4 1.04 1.4 8.7	0.54 ND (250) ND (2.5) ND (5) ND (5) ND (5,0) ND (250) ND (5,0) ND (0.5) 18 ND (0.5) ND (500) ND (500) ND (50) ND (2.5) ND (2.5) ND (0.5)	1.1 7,100 240 3,450 ND (5) ND (0.5) 32,800 ND (5.0) ND (0.5) 1,510 ND (0.5) 19,900 4,580 ND (0.5) ND (2.5) ND (2.5) ND (2.5)	0.86 130,000 47 6,800 ND (5) ND (0.5) 122,000 ND (5.0) ND (0.5) 25 ND (0.5) 64,100 6,990 ND (0.5) ND (2.5) ND (0.5)	3.7 47,000 95 11,600 ND (10) ND (1.0) 160,000 ND (10) ND (1.0) 725 ND (1.0) 66,200 11,640 ND (1.0) ND (5) ND (1.0) 1.42 ND (1.0) ND (1.0) ND (1.0)
MW-99 15 DUP-1(MW-3) DUP-2(MW-6) DUP-1(MW-7) DUP-2(MW-1) DUP-1(MW-9) DUP-2(MW-11) DUP-1(MW-10) DUP-2(MW-8) DUP-1(MW-1) DUP-2(MW-3) DUP-1(MW-4) DUP-1 (MW-6) DUP-1 (MW-9) DUP-1 (MW-9) DUP-1 (MW-4) DUP-1 (MW-4) DUP-1 (MW-4)	Nov-98 Nov-98 Aug-99 Aug-99 Dec-99 Dec-99 Apr-00 Apr-00 Oct-00 Oct-01 Apr-01 Apr-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04	NA N	NA N	NA N	ND (250) 5.6 ND (5) ND (5) ND (0.5) ND (250) 64 19.3 ND (5.0) ND (500) ND (500) ND (500) ND (2.5) ND (2.5) 8.5 ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (0.5) ND (0.5) ND (5.0)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 13 2.8 ND (5.0) 1.2 ND (500) ND (50) 0.7 ND (2.5) 1.2 0.61 2.7	ND (250) ND (2.5) ND (5) 201 4.1 ND (250) ND (5.0) ND (5.0) 22.3 ND (500) ND (50) ND (50) ND (0.5) 58 58 ND (0.5) 8.2 ND (0.5) ND (25)	12 ND (250) ND (2.5) ND (5) 145 8.1 ND (250) 10 ND (0.5) 11 13.9 109J ND (50) ND (0.5) 47 0.5 .34J 15.2 ND (0.5) ND (25)	210 3,300 ND (2.5) 70 35 40.7 1,500 20 ND (0.5) 1,640 3.1 580 58.0 2.0 8.0 5.5 20.2 17.6	0.68 ND (250) ND (2.5) ND (5) ND (5) 1.5 ND (250) 488 2.4 ND (5.0) 1.2 ND (500) ND (50) ND (0.5) ND (2.5) 75.4 1.04 1.4	0.54 ND (250) ND (2.5) ND (5) ND (5) ND (5,0) ND (5,0) ND (0.5) 18 ND (0.5) ND (500) ND (500) ND (50) ND (50,0) ND (0.5) ND (0.5) ND (0.5) ND (0.5)	1.1 7,100 240 3,450 ND (5) ND (0.5) 32,800 ND (5.0) ND (0.5) 1,510 ND (0.5) 19,900 4,580 ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) 19J ND (0.5) ND (0.5) 314 5,000	0.86 130,000 47 6,800 ND (5.5) ND (0.5) 122,000 ND (5.0) ND (0.5) 25 ND (0.5) 64,100 6,990 ND (0.5) ND (2.5) ND (0.5) ND (0.5)	3.7 47,000 95 11,600 ND (10) ND (1.0) 160,000 ND (1.0) 725 ND (1.0) 66,200 11,640 ND (1.0) ND (5) ND (1.0) 1.42 ND (1.0)
MW-99 15 DUP-1(MW-3) DUP-2(MW-6) DUP-1(MW-7) DUP-2(MW-1) DUP-1(MW-9) DUP-2(MW-11) DUP-1(MW-10) DUP-2(MW-8) DUP-1(MW-1) DUP-2(MW-3) DUP-1(MW-4) DUP-1 (MW-6) DUP-1 (MW-9) DUP-1 (MW-4) DUP-1 (MW-4) DUP-1 (MW-4) DUP-1 (MW-4)	Nov-98 Nov-98 Aug-99 Aug-99 Dec-99 Apr-00 Apr-00 Oct-00 Oct-01 Apr-01 Apr-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04 Oct-04 Apr-05	NA N	NA N	NA N	ND (250) 5.6 ND (5) ND (5) ND (0.5) ND (250) 64 19.3 ND (5.0) ND (5.0) ND (500) ND (500) ND (50) ND (2.5) ND (2.5) ND (2.5) ND (0.5) ND (0.5) ND (0.5)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (0.5) ND (0.5) ND (5.0)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 13 2.8 ND (5.0) 1.2 ND (500) ND (50) 0.7 ND (2.5) 1.2 0.61 2.7 1.8 ND (25)	ND (250) ND (2.5) ND (5) 201 4.1 ND (250) ND (5.0) ND (5.0) ND (5.0) 22.3 ND (500) ND (50) ND (50) ND (0.5) 58 58 ND (0.5) 8.2 ND (0.5)	12 ND (250) ND (2.5) ND (5) 145 8.1 ND (250) 10 ND (0.5) 11 13.9 109J ND (50) ND (0.5) 47 0.5 .34J 15.2 ND (0.5)	210 3,300 ND (2.5) 70 35 40.7 1,500 20 ND (0.5) 1,640 3.1 580 58.0 2.0 8.0 5.5 20.2 17.6 5.4	0.68 ND (250) ND (2.5) ND (5) ND (5) 1.5 ND (250) 488 2.4 ND (5.0) 1.2 ND (500) ND (50) ND (0.5) ND (2.5) 75.4 1.04 1.4 8.7 ND (25)	0.54 ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) ND (50) ND (0.5) ND (500) ND (500) ND (500) ND (50) ND (2.5) ND (2.5) ND (0.5)	1.1 7,100 240 3,450 ND (5) ND (0.5) 32,800 ND (5.0) ND (0.5) 1,510 ND (0.5) 19,900 4,580 ND (0.5)	0.86 130,000 47 6,800 ND (5) ND (0.5) 122,000 ND (5.0) ND (0.5) 25 ND (0.5) 64,100 6,990 ND (0.5) ND (0.5)	3.7 47,000 95 11,600 ND (10) ND (1.0) 160,000 ND (10) ND (1.0) 725 ND (1.0) 66,200 11,640 ND (1.0) ND (5) ND (1.0) 1.42 ND (1.0) ND (1.0) 255 28,000 ND (1.0)
MW-99 15 DUP-1(MW-3) DUP-2(MW-6) DUP-1(MW-7) DUP-2(MW-1) DUP-1(MW-9) DUP-2(MW-11) DUP-1(MW-10) DUP-2(MW-8) DUP-1(MW-1) DUP-2(MW-3) DUP-1(MW-4) DUP-1 (MW-6) DUP-1 (MW-9) DUP-1 (MW-9) DUP-1 (MW-8) DUP-1 (MW-4)	Nov-98 Nov-98 Aug-99 Aug-99 Dec-99 Apr-00 Apr-00 Oct-00 Apr-01 Apr-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04 Oct-04 Apr-05 Nov-05 May-06 Oct-06	NA N	NA N	NA N	ND (250) 5.6 ND (5) ND (5) ND (0.5) ND (250) 64 19.3 ND (5.0) ND (500) ND (500) ND (500) ND (0.5) ND (2.5) 8.5 ND (0.5) ND (0.5) ND (0.5) ND (250) ND (250) ND (250) ND (250) ND (250) ND (0.5) ND (0.48)	ND (250) ND (2.5) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 11 ND (0.5) ND (5.0) ND (5.0) ND (5.0) ND (5.0) ND (5.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (2.5)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 13 2.8 ND (5.0) 1.2 ND (500) ND (50) 0.7 ND (2.5) 1.2 0.61 2.7 1.8 ND (25) ND (250) 0.61 ND (0.093)	ND (250) ND (2.5) ND (5) 201 4.1 ND (250) ND (5.0) ND (5.0) ND (5.0) 22.3 ND (500) ND (50) ND (50) ND (0.5) 58 58 ND (0.5) 8.2 ND (0.5) ND (250) ND (250) ND (250) ND (250) ND (0.5)	12 ND (250) ND (2.5) ND (5) 145 8.1 ND (250) 10 ND (0.5) 11 13.9 109J ND (50) ND (0.5) 47 0.5 .34J 15.2 ND (0.5) ND (25) ND (25) ND (250) 0.11J 0.20J	210 3,300 ND (2.5) 70 35 40.7 1,500 20 ND (0.5) 1,640 3.1 580 58.0 2.0 8.0 5.5 20.2 17.6 5.4 870 1750 0.72 1.4	0.68 ND (250) ND (2.5) ND (5) ND (5) 1.5 ND (250) 488 2.4 ND (50) 1.2 ND (500) ND (0.5) ND (2.5) 75.4 1.04 1.4 8.7 ND (250) ND (250) ND (250) 1.44 1.20	0.54 ND (250) ND (2.5) ND (5) ND (5) ND (5) ND (250) ND (250) ND (5.0) ND (5.0) ND (5.0) ND (500) ND (500) ND (500) ND (50) ND (2.5) ND (0.5)	1.1 7,100 240 3,450 ND (5) ND (0.5) 32,800 ND (5.0) ND (0.5) 1,510 ND (0.5) 19,900 4,580 ND (0.5) 9.6	0.86 130,000 47 6,800 ND (5) ND (0.5) 122,000 ND (5.0) ND (0.5) 25 ND (0.5) 64,100 6,990 ND (0.5) ND (0.5)	3.7 47,000 95 11,600 ND (10) ND (1.0) 160,000 ND (1.0) 725 ND (1.0) 66,200 11,640 ND (1.0) ND (5) ND (1.0) 1.42 ND (1.0) 255 28,000 ND (1.0) 28
MW-99 15 DUP-1(MW-3) DUP-2(MW-6) DUP-1(MW-7) DUP-2(MW-1) DUP-1(MW-9) DUP-2(MW-11) DUP-1(MW-10) DUP-2(MW-8) DUP-1(MW-1) DUP-2(MW-3) DUP-1(MW-4) DUP-1 (MW-6) DUP-1 (MW-9) DUP-1 (MW-9) DUP-1 (MW-8) DUP-1 (MW-4)	Nov-98 Nov-98 Aug-99 Aug-99 Dec-99 Apr-00 Apr-00 Oct-00 Apr-01 Apr-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04 Oct-04 Apr-05 Nov-05 May-06 Oct-06 May-07	NA N	NA N	NA N	ND (250) 5.6 ND (5) ND (5) ND (0.5) ND (250) 64 19.3 ND (5.0) ND (500) ND (500) ND (500) ND (0.5) ND (2.5) 8.5 ND (0.5) ND (0.5) ND (0.5) ND (250) ND (250) ND (250) ND (250) ND (250) ND (0.5)	ND (250) ND (2.5) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 11 ND (0.5) ND (5.0) ND (5.0) ND (5.0) ND (5.0) ND (5.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (2.5)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 13 2.8 ND (5.0) 1.2 ND (500) ND (50) 0.7 ND (2.5) 1.2 0.61 2.7 1.8 ND (25) ND (250) 0.61 ND (0.093) 9.00	ND (250) ND (2.5) ND (5) 201 4.1 ND (250) ND (5.0) ND (5.0) 22.3 ND (500) ND (5.0) 22.3 ND (500) ND (0.5) 58 58 ND (0.5) 8.2 ND (0.5) ND (250) ND (250) ND (250) ND (250) ND (0.052) ND (0.062)	12 ND (250) ND (2.5) ND (5) 145 8.1 ND (250) 10 ND (0.5) 11 13.9 109J ND (50) ND (0.5) 47 0.5 .34J 15.2 ND (0.5) ND (25) ND (25) ND (250) 0.11J 0.20J 0.9	210 3,300 ND (2.5) 70 35 40.7 1,500 20 ND (0.5) 1,640 3.1 580 58.0 2.0 8.0 5.5 20.2 17.6 5.4 870 1750 0.72 1.4 10.5	0.68 ND (250) ND (2.5) ND (5) ND (5) 1.5 ND (250) 488 2.4 ND (5.0) 1.2 ND (500) ND (50) ND (0.5) ND (2.5) 75.4 1.04 1.4 8.7 ND (25) ND (250) 1.44 1.20 1.60	0.54 ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) ND (50) ND (0.5) ND (500) ND (500) ND (500) ND (500) ND (50) ND (50) ND (50) ND (0.5) ND (0.64) ND (0.064)	1.1 7,100 240 3,450 ND (5) ND (0.5) 32,800 ND (5.0) ND (0.5) 1,510 ND (0.5) 19,900 4,580 ND (0.5)	0.86 130,000 47 6,800 ND (5) ND (0.5) 122,000 ND (5.0) ND (0.5) 25 ND (0.5) 64,100 6,990 ND (0.5)	3.7 47,000 95 11,600 ND (10) ND (1.0) 160,000 ND (10) ND (1.0) 725 ND (1.0) 66,200 11,640 ND (1.0) ND (5) ND (1.0) 1.42 ND (1.0) ND (1.0) 255 28,000 ND (1.0) 28 ND (0.059)
MW-99 15 DUP-1(MW-3) DUP-2(MW-6) DUP-1(MW-7) DUP-2(MW-1) DUP-1(MW-9) DUP-2(MW-1) DUP-1(MW-10) DUP-2(MW-8) DUP-1(MW-1) DUP-1(MW-1) DUP-1(MW-4) DUP-1 (MW-6) DUP-1 (MW-9) DUP-1 (MW-9) DUP-1 (MW-8) DUP-1 (MW-8) DUP-1 (MW-4)	Nov-98 Nov-98 Aug-99 Aug-99 Dec-99 Apr-00 Apr-00 Oct-00 Oct-00 Apr-01 Apr-01 Apr-02 Oct-02 Apr-03 Oct-03 May-04 Oct-04 Apr-05 Nov-05 May-06 Oct-06 May-07	NA N	NA N	NA N	ND (250) 5.6 ND (5) ND (5) ND (0.5) ND (250) 64 19.3 ND (5.0) ND (500) ND (500) ND (500) ND (0.5) ND (2.5) 8.5 ND (0.5) ND (0.5) ND (0.5) ND (250) ND (250) ND (250) ND (250) ND (250) ND (0.5)	ND (250) ND (2.5) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 11 ND (0.5) ND (5.0) ND (5.0) ND (5.0) ND (5.0) ND (5.0) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (0.5) ND (2.5)	ND (250) ND (2.5) ND (5) ND (5) ND (0.5) ND (250) 13 2.8 ND (5.0) 1.2 ND (500) ND (50) 0.7 ND (2.5) 1.2 0.61 2.7 1.8 ND (250) ND (250) 0.61 ND (0.093) 9.00	ND (250) ND (2.5) ND (5) 201 4.1 ND (250) ND (5.0) ND (5.0) ND (5.0) 22.3 ND (500) ND (50) ND (50) ND (0.5) 58 58 ND (0.5) 8.2 ND (0.5) ND (250) ND (250) ND (250) ND (250) ND (0.5)	12 ND (250) ND (2.5) ND (5) 145 8.1 ND (250) 10 ND (0.5) 11 13.9 109J ND (50) ND (0.5) 47 0.5 .34J 15.2 ND (0.5) ND (25) ND (25) ND (250) 0.11J 0.20J 0.9	210 3,300 ND (2.5) 70 35 40.7 1,500 20 ND (0.5) 1,640 3.1 580 58.0 2.0 8.0 5.5 20.2 17.6 5.4 870 1750 0.72 1.4	0.68 ND (250) ND (2.5) ND (5) ND (5) 1.5 ND (250) 488 2.4 ND (5.0) 1.2 ND (500) ND (5.0) ND (0.5) ND (2.5) 75.4 1.04 1.4 8.7 ND (250) 1.4 8.7 ND (250) 1.44 1.20 1.60	0.54 ND (250) ND (2.5) ND (5) ND (5) ND (5) ND (250) ND (250) ND (5.0) ND (5.0) ND (5.0) ND (500) ND (500) ND (500) ND (50) ND (2.5) ND (0.5)	1.1 7,100 240 3,450 ND (5) ND (0.5) 32,800 ND (5.0) ND (0.5) 1,510 ND (0.5) 19,900 4,580 ND (0.5) 9.6	0.86 130,000 47 6,800 ND (5) ND (0.5) 122,000 ND (5.0) ND (0.5) 25 ND (0.5) 64,100 6,990 ND (0.5) ND (0.5)	3.7 47,000 95 11,600 ND (10) ND (1.0) 160,000 ND (1.0) 725 ND (1.0) 66,200 11,640 ND (1.0) ND (5) ND (1.0) 1.42 ND (1.0) 255 28,000 ND (1.0) 28

²ND = Not Detected above laboratory limit

^{()&}lt;sup>3</sup> = Detection Limit

⁴Estimated concentration

⁵Chlorobenzene detected at 16,000 ppb

⁶Bromodichloromethane and 1,1,2,2-Tetrachloroethane detected at 12 ppb and 11 ppb, respectively

⁷Freon 113 detected at 3.1 ppb

⁹cis-1,2 DCE detected at 1.0 ppb (Apr-97) and 1.6 ppb (At

¹⁰ Methylene Chloride detected at 29 ppb

¹¹ Methylene Chloride detected at 17 ppb

¹²Methylene Chloride detected at 7.5 ppb

¹³cis-1,2 DCE detected at 23 ppb ¹⁴Duplicate of MW-2

¹⁶cis-1,2 DCE detected at 1.5 ppb (Dec-99)

¹⁷cis-1,2 DCE detected at 1.1 ppb (Oct-00)

¹⁸ cis-1,2 DCE detected at 1.5 ppb and Bromodichloromethane detected at 1.6 ppb (Apr-01)

^{191,1,1-}TCA detected at 3.2 ppb (Oct-01)

²⁰cis-1,2 DCE detected at 1.8 ppb (Oct-01), 1.0 ppb (Apr-02), 1.5 ppb (Apr-03), 3.7 ppb (May-04), 3.8 ppb (Oct-04)
²¹cis-1,2 DCE detected at 1.73 ppb and chlorobenzene estimated at 2.8 ppb (Oct-03)

²²cis-1,2 DCE detected at 2.3 ppb (Oct-04) and 4.0 ppb (May-06)

TABLE 3
LABORATORY ANALYTICAL RESULTS
MASS REMOVAL CALCULATIONS - SOIL VAPOR EXTRACTION SYSTEM
PILOT CHEMICAL

rando persoa de			F				Land Street	T	7									
CANDIE	5.46	Elapsed	Elapsed		ALIE EL CIA			Total Mass	Total Mass	- Mass & o					8260B V	OCS (ppm		
SAMPLE NUMBER	DATE SAMPLED	Time Operational	Time Between	Total Elapsed Time (days)	AVE. FLOW RATE (cfm)	Mass lbs/cu.ft,	Mass lbs/min	Removed Between	Removed	Renioval Rate (lo gay)	TotalsVOCs	Totalnyoos Holist		100	14 A 14 A		Francis La	
		(min)	Events (day)					Events (ibs)	(lbs)	(Ibs/gay)		11,0/15,01.11	/pages	henzene	Toluene	v voiai.	Soprepy Senzene	MIBE
EW3	1/24/06 2:10 PM	175	0.12	0.12	3.2	0.0009318	0.0029818	0.52	0.52	4.29	3511	14927	<50	182	896	2433	<50	<50
EW3	2/13/06 11:41 AM	23131	16.1	16.2	3.39	0.0006394	0.0025886	59.88	60.40	3.73	2410	10243	<50	137	620	1653	<50	<50
EW3	2/17/06 12:04 PM	3203	2.2	18.4	1.03	0.0007757	0.0015637	5.01	65.41	2.25	2913	12425	<50	171	676	2066	<50	<50
VS2	1/24/06 2:15 PM	180	0.12	0.12	2.6	0.0010149	0.0026387	0.47	0.47	3.80	3827.0	16257	165.0	610.0	914.0	2138.0	<50 ·	<50
VS2	2/13/06 11:44 AM	23129	16.1	16.2	6.57	0.0007447	0.0040339	93.30	93.77	5.81	2793.0	11929	129.0	422.0	556.0	1686.0	<50	<50
VS2 VS2	2/17/06 12:06 PM 3/15/06 11:12 AM	3202 37386	2.2	18.4 44.4	3.08 2.40	0.0007741	0.0036641	11.73 88.79	105.51 194.30	5.28 3.42	2905.0	12400	115.0	422.0	600.0 761.0	1768.0	<50	<50
VS2	4/5/06 12:45 PM	30333	21.1	65.4	1.82	0.0003633	0.0022460	68.13	262.43	3.23	3591.0 4392.0	15370 18732	167.0 133.0	534.0 755.0	1010.0	2129.0 2437.0	<50 57	<50 <50
VS2	4/17/06 11:00 AM	17175	11.9	77.4	2.82	0.0008502	0.0023428	40.24	302.67	3.37	3201.0	13620	<50	496.0	799.0	1906.0	<50	<50
VS2 VS2	5/2/06 10:35 AM 5/9/06 11:26 AM	60 10131	7.035	77.4 84.4	53.00 4.10	0.0009687	0.0253831 0.0278612	1.52 282.26	304.19 586.45	36.55 40.12	3684.0	15517	109.0	483.0	1190.0 837.0	1836.0	66	<50
VS2	5/12/06 4:51 PM	4645	3.226	87.7	3.30	0.0009958	0.0036609	17.00	603.46	5.27	3688.0 3728.0	15747 15951	80.0 106.0	574.0 523.0	802.0	2147.0 2222.0	50 75	<50 <50
VS2	6/9/06 11:14 AM	28823	20.016	107.7	1.61	0.0010413	0.0025006	72.07	675.53	3.60	3892.0	16681	104.0	528.0	799.0	2378.0	83	<50
VS2	7/7/06 11:04 AM	30548	21.214	128.9	2.59	0.0009270	0.0028313 S2 opened 100	86.49 % on10/18/06 -	762.02	4.08	3463.7	14849	108.0	377.0	654.0	2294.0	30.7	<8
VS2	12/5/06 11:09 AM	59220	41.125	170.0	1.04	0.0009831	0.0013412	79.43	841.45	en 1.93	3686.0	15748	116.0	489.0	793.0	2248.0	40	<8
							VS2 opened 10	0% on 1/5/07 - r	no sample takei		0000.0	10140	110.0	400.0	700.0	2240.0	1. 40	
VS2	1/29/07 11:07 AM	34146	23.713	193.7	1.32	0.0002673	0.0011270	38.48	879.93	1.62	1028.2	4282	52.7	129.0	390.0	450.1	6.4	<4
VS2 VS2	3/2/07 11:09 AM 4/18/07 1:34 PM	39294 48372	27.288 33.592	221.0 254.6	1.92 1.68	0.0013010 0.0004765	0.0012703 0.0015997	49.92 77.38	929.84 1007.22	1.83 2.30	4878.0 1790.0	20840 7632	102.0 50.0	701.0 258.0	1100.0 415.0	2898.0 1046.0	77 21	<8 <3
VS2	5/7/07 11:04 AM	23298	16.179	270.8	2.33	0.0004816	0.0009605	22.38	1029.60	1.38	1809.0	7715	62.0	242.0	411.0	1073.0	21	<4
VS2	5/31/07 11:19 AM	34548	23.992	294.8	3.63	0.0006480	0.0016832	58.15	1087.75	2.42	2439.3	10381	72.5	314.0	597.0	1427.0	28.8	<8
VS2 VS2	6/19/07 11:44 AM 7/10/07 11:06 AM	25740 15864	17.875 11.017	312.7 323.7	1.75 1.50	0.0009831	0.0021939 0.0012533	56.47 19.88	1144.22 1164.10	3.16 1.80	3686.0 2119.7	15748 8961	116.0 67.7	489.0 289.0	793.0 610.0	2248.0 1133.0	40	<4 <4
VS2	7/25/07 2:08 PM	16560	11.500	335.2	3.80	0.0005534	0.0012353	24.59	1188.70	2.14	2121.6	8993	50.4	302.0	584.0	1161.0	20 24.2	<4
VS2	12/11/07 11:14 AM	25176	17.483	352.7	7.84	0.0007423	0.0037939	95.51	1284.21	5.46	2787.1	11891	66.3	314.0	639.0	1736.0	31.8	<4
EW4	7/7/06 12:55 PM	85	0.05	0.05	4.3	0.0016191	0.0069621	0.5918	0.5918	10.03	6009.0	25936	-F O	104	000	4007		
EW4	7/18/06 10:57 AM	15722	10.92	10.97	2.2	0.0015151	0.0052075	81.87	82.46	7.50	5929.8	25398	<5.0 <5.0	194 297	888 1210	4927 4414	<7.0 8.8	<8.0 <8.0
VS1	7/18/06 12:46 PM	45	0.03	0.03	6.85	0.0016045	0.0109910	0.49	0.49	15.83	6298.0	25702.5	79.0	519.0	3360.0	2326.0	14	<8.0
VS1	8/10/06 11:14 AM	25108	17.4	17.5	6.54	0.0001869	0.0059969 VS1 opened 20	150.57 % on12/5/06 - r	151.07 no sample take	<u>8.64</u> n	720	2994	<1.0	64	298	354	4	<1.6
VS1	1/2/07 10:29 AM	33120	23.0	40.5	1.75	0.0007969	0.0020391	67.53	218.60	. 2.94	3104	12766	<5.0	218	1520	1352	14	<8.0
VS1	1/29/07 11:04 AM	34146	23.7	64.2	1.04	0.0003585	0.0008059	27.52	246.12	1.16	1403.4	5743	28	102	721	546.3	6.1	<1.6
VS1 VS1	3/2/07 11:06 AM 4/18/07 1:43 PM	39294 48372	27.3 33.6	91.5 125.1	2.13 2.39	0.0008791 0.0004620	0.0009808 0.0015154	38.54 73.30	284.66 357.96	1.41 2.18	3406.9 1770.7	14082 7400	49.3	219 123	1530 662	1590 953	18.6 9.7	<8 <3
VS1	5/7/07 11:08 AM	23298	16.2	141.2	4.33	0.0005984	0.0017814	41.50	399.46	2.57	2293	9586	25	169	854	1233	12	<4
VS1	5/31/07 11:16 AM	34548	24.0	165.2	5.00	0.0006471	0.0029051	100.37	499.83	4.18	2488.4	10365	<2.5	166	1000	1312	10.4	<4
VS1	6/19/07 11:40 AM	25740	17.9 11.0	183.1 194.1	4.07 2.63	0.0006030 0.0004207	0.0028346	72.96	572.79 599.99	4.08 2.47	2320 1630	9660 6738	33.5 <2.5	166 119	923	1187	10.5	<4
VS1	7/10/07 11:01 AM	15864	11.0	194.1	2.03	0.0004207	0.0017147	21.20	599.99	2.41	1030	0730	12.5	119	741	762.2	7.8	<4
VD1	8/10/06 12:15 PM	25	0.02	0.02	6.20	0.0009188	0.0056965	0.14	0.14	8.20	3575.0	14717.8	<2.5	298.0	1710.0	1567.0	<3.5	<4.0
VD1	8/17/06 12:15 PM	8550	5.9	6.0	2.50	0.0017815	0.0058731	50.21	50.36	8.46	6894	28537	<10.0	704	3040	3150	<14	<16
VD2	8/29/06 11:59 AM	1440	1.00	1.00	4.10	0.0017336	0.0071076	10.23	10.23	10.23	6869.0	27769.5	<5.0	401.0	4130.0	2338.0	<7.0	<8.0
VD2	9/6/06 11:58 AM	10169	7.1	8.1	5.76	0.0017330		72.23	82.46	10.23	4504	18388	<5.0	296	2410	1798	<7.0	<8.0
										274	6000.0	24743.4	25	740				
VD3 VD3	9/6/06 12:59 PM 9/12/06 11:27 AM	60 5758	0.04 4.0	0.04 4.0	3.03 1.47	0.0015447 0.0015284		0.28 19.91	0.28 20.19	6.74 4.98	6088.0 6026	24743.4	25	712	3430 3410	1921 1889	<7.0 <7.0	<8.0 <8.0
VD3	9/12/00 11.2/ AN	3738	4.0	4.0	1.47	0.0013204	VD3 opened 25	5% on 12/5/06 - i							3410	1003	1 47.0	-0.0
VD3	1/2/07 10:29 AM	33120	23.0	27.0	0.76	0.0011652		49.74	69.92	2.16	4675	18665	<5.0	293	3200	1182	<7.0	<8.0
1/54	0/40/06 44 44 484	45	0.01	0.04	3.54	0.0007233	0.0025605	0.04	0.04	3.69	2804.0	11586.6	<5	476	1070	1058	<7.0	<8.0
VD4 VD4	9/12/06 11:44 AM 10/3/06 1:22 PM	15 8288	5.8	0.01 5.8	1.47	0.0007233	0.0025605	12.17	12,21	2.11	1745	7197	<5	271	1270 813	661	<7.0	<8.0
						-					74.2	2467	CO 05					
VD5	10/3/06 1:32 PM	10	0.01	0.01	1.29	0.0000198	0.0000255	0.00	0.00	0.04 1,33	74.6 7461	316.7 30136	<0.25 <5	9.8 606	19.8	45	<0.35 <7.0	<0.4
VD5	10/5/06 11:07 AM	2735	1.9	1.9	0.66	0.0018813	0.0009268	2.53	2.53	1.33	7-101				4530	2325	~(.0	<8.0
VD6	10/5/06 11:18 AM	11	0.01	0.01	1.29	0.0010929	0.0014099	0.02	0.02	2.03	4272.0	17507.1	<5	247.0	2190.0	1821	14	<0.4
VD6	10/11/06 9:49 AM	8551	5.9	5.9	1.22	0.0014157	0.0015742	13.46	13.48	2.27	5597	22678	23	388	3280	1895	11	<8.0
VD6	1/2/07 10:29 AM	33120	23.0	28.9	1.11	0.0004923		0% on12/5/06 - 36.81	no sample take	en	1972	7885	<5.0	142	1330	500	<7.0	<8.0
VDØ	1/2/07 TU:29 AW	33120	23.0	20.9	1.11	0.0004923	0.0011114	30.01	50.29	1.00					1330	500	.7.0	-0.0
VD7	10/11/06 9:59 AM	10	0.01	0.01	0.59	0.0009628	0.0005680	0.01	0.01	0.82	3785.0	15422.7 14001	43	263.0	2070.0	1392	17	<0.4
VD7	10/18/06 10:18 AM	2959	2.1	2.1	1.00	0.0008740	0.0007301	2.16	2.17	1.05	3414	14001	70	259	1720	1377	18	<8.0
L	<u> </u>	L		L	L		<u> </u>			1					<u></u>		<u> </u>	

Tables

TABLE 1 HISTORICAL GROUNDWATER ELEVATION DATA PILOT CHEMICAL

Well Identification	Date Measured	Elevation ¹	Depth to Water ²	Groundwater Elevation ³
Identification	0/00/4005	(feet)	(feet)	(feet)
	6/22/1995	152.44 4	35.39	117.05
	9/25/1995	152.44	30.89	121.55
	12/19/1995	152.44 4	36.25	116.19
	3/27/1996	152.44 4	32.99	119.45
	1/21/1997	152.60 ⁵	35.62	116.98
	4/24/1997		33.64	118.96
	5/14/1997		33.50	119.10
	10/22/1997		37.01	115.59
	5/12/1998		32.54	120.06
	11/17/1998		34.82	117.78
	8/19/1999		40.71	111.89
	12/27/1999		49.84	102.76
MW-1	4/11/2000		43.42	109.18
14144-1	10/31/2000		43.13	109.47
	4/4/2001		41.02	111.58
	10/30/2001		45.42	107.18
	4/10/2002		42.76	109.84
	10/23/2002		51.20	101.40
	4/8/2003		45.17	107.43
	10/9/2003		53.67	98.93
	5/17/2004		55.45 62.29	97.15
	10/29/2004 11/8/2005		47.30	90.31 105.30
	5/12/2006	•	44.56	108.04
	10/26/2006		44.36 47.46	105.14
	4/30/2007		44.81	107.79
	10/29/2007		53.97	98.63
	6/22/1995	153,45	33.08	120.37
	9/25/1995	100.40	35.59	117.86
	12/19/1995		39.52	113.93
	3/27/1996		35.72	117.73
	1/21/1997		36.55	116.90
	4/24/1997		34.75	118.70
	5/14/1997		34.88	118.57
	10/22/1997		38.39	115.06
	5/12/1998		33.52	119.93
	11/17/1998		37.54	115.91
	8/19/1999		41.58	111.87
•	12/27/1999 ⁶		49.82	103.63
	4/11/2000		44.22	109.23
MW-2	10/31/2000		43.56	109.89
	4/4/2001		41.54	111.91
	10/30/2001		44.89	108.56
	4/10/2002		43.30	110.15
	10/23/2002		51.39	102.06
	4/8/2003		46.20	107.25
	10/9/2003		53.79	99.66
	5/17/2004		56.46	96.99
	10/29/2004		63.15	90.30
	11/8/2005		48.23	105.22
	5/12/2006		45.68	107.77
	10/26/2006 ⁶		48.17	105.28
	4/30/2007		45.91	107.54
	10/29/2007		54.84	98.61

TABLE 1 HISTORICAL GROUNDWATER ELEVATION DATA PILOT CHEMICAL

dentification		(feet)	Depth to Water 2 (feet)	Groundwater Elevation
	610014005			(feet)
	6/22/1995	153.70	33.39	120.31
	9/25/1995		35.96	117.74
	12/19/1995		39.99	113.71
	3/27/1996		36.13	117.57
	1/21/1997		37.31	116.39
	4/24/1997		35.25	118.45
	5/14/1997		35.28	118.42
	10/22/1997		39.12	114.58
	5/12/1998		34.31	119.39
	11/18/1998		38.10	115.60
	8/19/1999		42.11	111.59
	12/27/1999		51.34	102.36
	4/11/2000		45.16	108.54
MW-3	10/31/2000		44.75	108.95
	4/4/2001		42.67	111.03
	10/30/2001		46.94	106.76
	4/10/2002		44.36	109.34
	10/23/2002		52.56	101.14
	4/8/2003		46.90	106.80
	10/9/2003		54.97	98.73
	5/17/2004		57.08	96.62
	10/29/2004		63.91	89.79
	11/8/2005		well dry	N/A
	5/12/2006		46.28	107.42
	10/26/2006		49.02	104.68
	4/30/2007		46.55	107.15
	10/29/2007		55.56	98.14
	6/22/1995	155.18	34.92	120.26
	9/25/1995	155.16	37.48	117.70
	12/19/1995		41.49	117.70
	3/27/1996		37.56	117.62
	1/21/1997		38.85	116.33
	4/24/1997		36.82	118.36
	5/14/1997		36.81	118.37
	10/22/1997		40.65	114.53
	5/12/1998		35.82	119.36
	11/17/1998		39.65	115.53
	8/19/1999		43.63	111.55
•	12/27/1999		52.84	102.34
	4/11/2000		46.72	108.46
MW-4	10/31/2000		46.29	108.89
	4/4/2001		44.22	110.96
	10/30/2001		48.48	106.70
	4/10/2002		45.89	109.29
•	10/23/2002		54.13	101.05
	4/8/2003		48.46	106.72
	10/9/2003		56.48	98.70
	5/17/2004		58.60	96.58
	10/29/2004		65.44	89.74
	11/8/2006		50.54	104.64
	5/12/2006 ⁶		57.40	97.78
	10/26/2006		50.63	104.55
				107.06
	4/30/2007		48.12	707 Uh

TABLE 1
HISTORICAL GROUNDWATER ELEVATION DATA
PILOT CHEMICAL

Well identification	Date Measured	Elevation ¹ (feet)	Depth to Water 2 (feet)	Groundwater Elevation (feet)
	6/22/1995	151.70	30.28	121,42
	9/25/1995	101.70	33.26	118.44
	12/19/1995		36.92	114.78
	3/27/1996		31.99	119.71
	1/21/1997		33.91	117.79
	4/24/1997		33.85	117.75
	5/14/1997		32.19	119.51
				115.59
	10/22/1997		36.11	
	5/12/1998		31.02	120.68
	11/17/1998		35.14	116.56
	8/20/1999		39.42	112.28
	12/27/1999		48.60	103.10
	4/11/2000		41.80	109.90
MW-5	10/31/2000		41.52	110.18
	4/4/2001		39.37	112.33
	10/30/2001		43.96	107.74
	4/10/2002		41.17	110.53
	10/23/2002		49.55	102.15
	4/8/2003		43.51	108.19
	10/9/2003		52.26	99.44
	5/17/2004		54.03	97.67
	10/29/2004		61.10	90.60
	11/8/2005		45.82	105.88
	5/12/2006		42.86	108.84
	10/26/2006		45,95	105.75
	4/30/2007		43,15	108.55
	10/29/2007	`	52.74	98.96
	6/22/1995	151.77	30.49	121.28
	9/25/1995	191117	33.36	118.41
	12/19/1995		37.16	114.61
	3/27/1996		33.16	118.61
	1/21/1997		34.21	117.56
	4/24/1997		34.19	117.58
	5/14/1997		32.40	119.37
			36.31	115.46
	10/22/1997		31.26	120.51
	5/12/1998			
	11/17/1998		35.39	116.38
	8/20/1999		39.59	112.18
	12/27/1999		48.78	102.99
1047.0	4/11/2000		42.07	109.70
MW-6	10/31/2000		41.78	109.99
	4/4/2001		39.63	112.14
	10/30/2001		44.17	107.60
	4/10/2002		41.42	110.35
	10/23/2002		49.76	102.01
	4/8/2003		43.75	108.02
	10/9/2003		52.42	99.35
	5/17/2004		54.24	97.53
	10/29/2004		61.27	90.50
	11/8/2005		46.06	105.71
	5/12/2006		43.14	108.63
	10/26/2006		46.18	105.59
	4/30/2007		43.38	108.39
	10/29/2007		52.89	98.88

TABLE 1
HISTORICAL GROUNDWATER ELEVATION DATA
PILOT CHEMICAL

Well	Date Measured	Elevation ¹	Depth to Water 2	Groundwater Elevation ³
Identification		(feet)	(feet)	(feet)
	6/22/1995	153,28	32.32	120.96
	9/25/1995		35.04	118.24
	12/19/1995		38.96	114.32
	3/27/1996		34.96	118.32
	1/21/1997		36.11	117.17
	4/24/1997		34.11	119.17
	5/14/1997		34.19	119.09
	10/22/1997		38.12	115.16
	5/12/1998		33.11	120.17
	11/17/1998		37.02	116.26
	8/19/1999		41.19	112.09
	12/27/1999		50.45	102.83
	4/11/2000		43.93	109.35
MW-7	10/31/2000		43.61	109.67
	4/4/2001		41.47	111.81
	10/30/2001		45.94	107.34
	4/10/2002		43.26	110.02
	10/23/2002		51.53	101.75
	4/8/2003		45.68	107.60
	10/9/2003		54.10	99.18
	5/17/2004		56.01	97.27
	-10/29/2004		63.01	90.27
	11/8/2006		47.88	105.40
	5/12/2006		45.02	108.26
	10/26/2006		47.91	105.37
	4/30/2007		45.33	107.95
	10/29/2007	•	54.65	98.63
	6/22/1995	151.55	38.88	112.67
•	9/25/1995		33.56	117.99
	12/19/1995		37.50	114.05
	3/27/1996		33.59	117.96
	1/21/1997		34.65	116.90
	4/24/1997		34.60	116.95
	5/14/1997		32.75	118.80
	10/22/1997		36.62	114.93
	5/12/1998		31.71	119.84
	11/17/1998		35.70	115.85
	8/20/1999		39.82	111.73
	12/27/1999		48.95	102.60
	4/11/2000		42.55	109.00
MW-8	10/31/2000		42.21	109.34
	4/4/2001		40.08	111.47
	10/30/2001		44.46	107.09
	4/10/2002		41.82	109.73
	10/23/2002		50.09	101.46
	4/8/2003		44.29	107.26
	10/9/2003		52.60	98.95
	5/17/2004	•	54.58	96.97
	10/29/2004		61.53	90.02
	11/8/2005		46.50	105.05
	5/12/2006		43.68	107.87
	10/26/2006		46.57	104.98
	4/30/2007		43.94	107.61
	10/29/2007		53.14	98.41

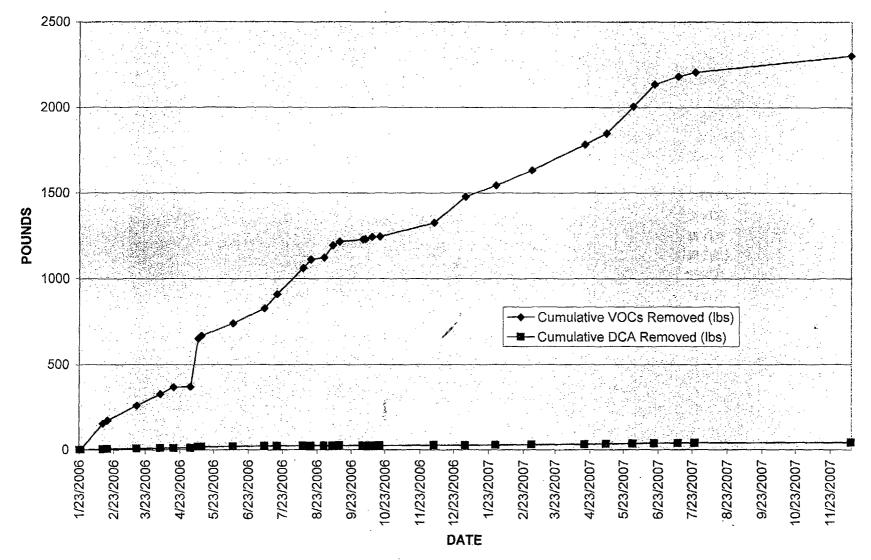
TABLE 1 HISTORICAL GROUNDWATER ELEVATION DATA PILOT CHEMICAL

Well Identification	Date Measured	Elevation ¹	Depth to Water 2	Groundwater Elevation ³
Taetitilication	0/00/4005	(feet)	(feet)	(feet)
	6/22/1995	151.60	31.72	119.88
	9/25/1995		34.26	117.34
	12/19/1995		38.42	113.18
	3/27/1996		34.50	117.10
	1/21/1997		35.75	115.85
	4/24/1997		33.60	118.00
	5/14/1997		33.61	117.99
	10/22/1997		37.41	114.19
	5/12/1998		32.71	118.89
	11/17/1998		36.48	115.12
	8/19/1999		40.40	111.20
	12/27/1999		49.68	101.92
	4/11/2000		43.60	108.00
MW-9	10/31/2000		43.19	108.41
	4/4/2001		41.08	110.52
	10/30/2001		45.33	106.27
	4/10/2002		42.76	108.84
	10/23/2002		50.98	100.62
	4/8/2003		45.38	106.22
	10/9/2003		53.30	98.30
	5/17/2004		55.50	96.10
•	10/29/2004		62.40	89.20
	11/8/2005		47.44	104.16
	5/12/2006 ⁶		54.30	97.30
	10/26/2006		47.46	104.14
	4/30/2007		45.06	106.54
	10/29/2007		54.93	96.67
	6/22/1995	153.16	32.32	120.84
•	9/25/1995	. 55.75	34.98	118,18
	12/19/1995		38.92	114.24
	3/27/1996		34.92	118.24
	1/21/1997		55.35 ⁶	97.81
	4/24/1997		34.10	119.06
	5/14/1997		34.11	
	10/22/1997			119.05
			37.98	115.18
	5/12/1998 11/17/1998		33.12 36.98	120.04
				116.18
	8/19/1999		41.12	112.04
	12/27/1999		50.31	102.85
· MW-10	4/11/2000		43.83	109.33
10100-10	10/31/2000		43.50	109.66
	4/4/2001		41.41	111.75
	10/30/2001		45.81	107.35
	4/10/2002		43.16	110.00
	10/23/2002		51.39	101.77
	4/8/2003		45.72	107.44
	10/9/2003		53.98	99.18
	5/17/2004		55.84	97.32
	10/29/2004		62.70	90.46
	11/8/2005		47.75	105.41
	5/12/2006		45.30	107.86
	10/26/2006		48.03	105.13
	4/30/2007		45.26	107.90
	10/29/2007 .		54.49	98.67

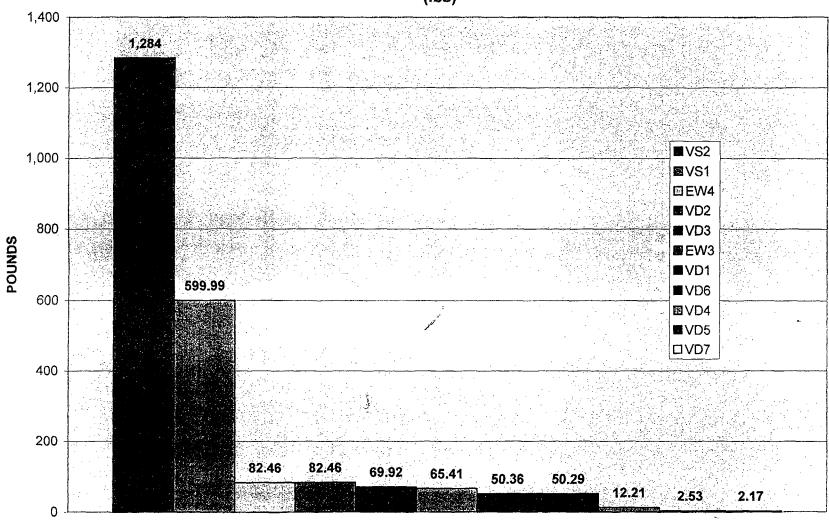
TABLE 1
HISTORICAL GROUNDWATER ELEVATION DATA
PILOT CHEMICAL

Well	Date Measured	Elevation ¹	Depth to Water 2	Groundwater Elevation ³		
Identification		(feet)	(feet)	(feet)		
	6/22/1995	152.48	31.49	120.99		
	9/25/1995		33.96	118.52		
	12/19/1995		37.63	114.85		
	3/27/1996		33.85	118.63		
	1/21/1997		34.92	117.56		
	4/24/1997		35.21	117.27		
	5/14/1997		33.17	119.31		
	10/22/1997		36.94	115.54		
	5/12/1998		32.31	120.17		
	11/17/1998		36.10	116.38		
	8/19/1999		40.02	112.46		
	12/27/1999		48.93	103.55		
	4/11/2000		42.79	109.69		
MW-11	10/31/2000		42.33	110.15		
	4/4/2001		40.36	112.12		
	10/30/2001		44.60	107.88		
	4/10/2002		42.08	110.40		
	10/23/2002		50.08	102.40		
	4/8/2003		44.55	107.93		
	10/9/2003		52.59	99.89		
	5/17/2004		54.72	97.76		
	10/29/2004		61.19	91.29		
	11/8/2005		46.62	105.86		
	5/12/2006		43.88	108.60		
	10/26/2006		47.63	104.85		
	4/30/2007		44.18	108.30		
	10/29/2007		53.11	99.37		

Notes:

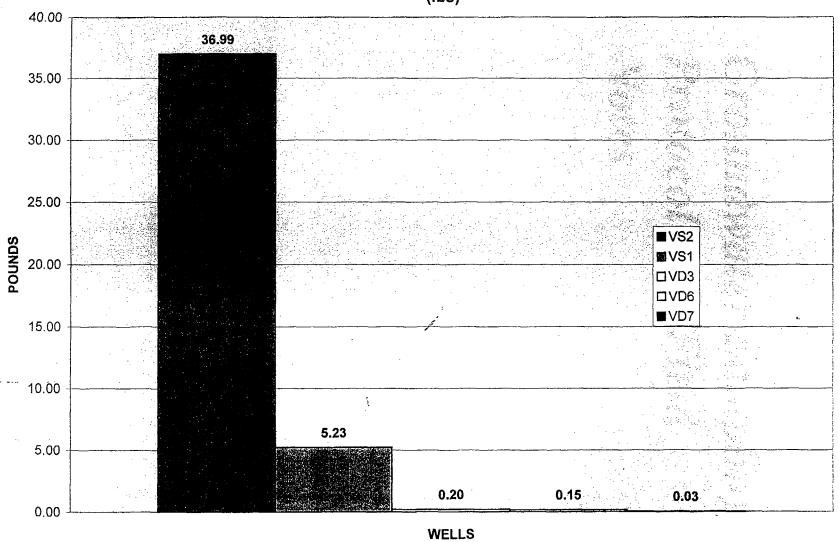

- 1 mean sea level elevation top of well casing.
- 2 depth of water from top of well casing.
- 3 mean sea level elevation groundwater table
- 4 elevation of original monitor well MW-1; calculated groundwater elevations are approximate.
- 5 surveyed elevation of replacement well MW-1
- 6 suspect measurement and not used to contour flow direction

Graphs


PACIFIC EDGE ENGINEERING (949) 470-1937; (949) 470-0943 (FAX)

report_text.doc

GRAPH 1
Cumulative Pounds Removed



GRAPH 2 Total VOCs Removed by Well (lbs)

WELL

GRAPH 3 Total DCA Removed by Well (lbs)

Appendix A

Groundwater Sampling Protocol and Field Notes

Groundwater Sampling Protocol

Groundwater samples were collected after removing three casing volumes of water from developed monitoring wells using a Waterra Inertial Pump. Dedicated 5/8-inch high-density polyethylene tubing was used to convey groundwater from the well to a surface storage container. Dedicated ¼-inch polyethylene tubing was used to convey the groundwater sample into the appropriate sample container. Groundwater samples were placed in thermally insulated chests containing ice and shipped under chain-of-custody to a State-certified analytical laboratory.

To determine whether cross-contamination of samples occurred during shipment to the laboratory, a trip blank consisting of a vial of distilled water was also included in the sample cooler.

HYDRODATA LOG

Pelot Chemical

MONITORWELL	. DAILE	STIME,	DEPTHATO	TOTAL	WELL	NOTES
			SWATER&		DIA.	
MW-1	10/29/07	11:06		67.0	. 4"	
MW-2		10:15	54.84	69.5	X 2"	
MW-3		10:25	55.56	67.1	2" 5"	,
MW-2 MW-3 MW-4 MW-5		10:21	6 T	76.08		
MW-5		10:54	52.74	71.9	4"	
MW-6		0:59	52.89	70.9	4"	
MW-7		10:47	54.65	73.3	4"	
MW-9 MW-9		11:02	53.14	73.7	4"	
		10:15	54.93	71.1	4"	
MW-10		10:39	54.49	70	4"	
MW-11	Ú	0.31	53.11	73.6	4"	
		,	•		,	
				;		
	:					
·						
		<u>_</u>	<u> </u>		L	<u></u>

PROJECT Pilot Chem EVENT -	SAM	SAMPLER DATE 10/30/07					
Well / Hydrologic statistics	Actio	Ϊ,,,	Pump Rate	IWL (low yield)			
Well, type (MW, EW, etc.)	- Start pum			, , , , , , , , , , , , , , , , , , , ,			
(Altax, Eax, eic.)							
SWL diameter 4 S call to make							
(if above screen) equals _6 > gal/ft. casir	ig						
	Stop	8:49					
Δ=13.03TOP	Sample						
- 10F	(Final I)						
SWL			Calculation	755			
(if in screen)			į.	ls x 3 25.5 gals.			
53.17 BOP		SWL to BOP o packer to BOP		3 casings			
measured		• =	alculation (Airli				
T.D	•	gal/ft. x	π. =	gals.			
Equipment Used / Sampling Method / Description of Ever	nt:			15.5			
Purged / Developed with:		Actual gallons	purged	<u> </u>			
Waterna HydroliftII		Actual volumes purged 3					
Waterna Hydrolift II 38" Dedicated Poly		Well yield ⊕ MY					
· · · · · · · · · · · · · · · · · · ·		CDC # 43737					
· · · · · · · · · · · · · · · · · · ·	į.	Sample I.D.	Analysis	Lab			
Sampled with: 14" Disposable Poly Additional comments: Nor hulling		MW-1		ASL			
Additional comments:		<u></u>					
VQ /V 1	·-,		•				
Weather Condition (AM) Claz							
PM Claz							
Gallons purged * TEMP(C) 'F EC	PH .	TURBIDIT	Y No.	211			
(circle one) (us / cm)		(NTU)	$\frac{DU}{DU}$	ORP			
1. 8.5 20.4 6.30	G.96	100	3.64	-150			
2. 17 20.7 0.26	6.64	62	3.32	-152			
3. 25.5 20.6 6.26	6.51	44	3.36	-150			
4.	1 31 91		7.70	1/6			
5.							
6.	,		·				
7.			·				
8.							
. • •	1						

casing volume purged

by reducing pump rate or cycling pump.

later or next day.

3 volumes

Well ID MW-2

(fill out completely) DATE 10/29/07 Pilot Chem **PROJECT EVENT** SAMPLER-**IWL** Well / Hydrologic statistics Action Time Pump Rate (low yield) Well type ___ (MW, EW, etc.) Start pump/Begin 2:04 ddiameter __e SWL _ equals 16.7 gal/ft, casing (if above screen) 2:26 Stop 2:32 Sampled TOP (Final IWL) **Purge Calculation** SWL (if in screen) gal/ft. ____ ft. $\frac{2.5}{2.5}$ gals x 3 $\frac{1.5}{2.5}$ gals. SWL to BOP or packer to BOP one volume 3 casings BOP Head purge calculation (Airlift only) measured gal/ft. x _____ ft. = gals. T.D. -Packer to SWL Equipment Used / Sampling Method / Description of Event: Actual gallons purged Purged / Developed with: Waterna HydroliftII Actual volumes purged 38" Dedicated Poly MY Well yield ⊕ (see below) 42223 COC # Sampled with: 14" Disposable Poly <u>Analysis</u> Sample I.D. MW-2 No bubble Additional comments: Weather Condition TEMR°C) °F Gallons purged * TURBIDITY PH FC (circle one) (us / cm) (NTU) 1. 6.68 2. Э. *4. 5. 6. 7. 8. * Take measurement at ⊕ HY - Minimal MY - WL drop - able to purge 3 LY - able to purge 3 VLY - Minimal recharge approximate each volumes during on setting unable to purge W.L. drop. volumes by returning casing volume purged by reducing pump rate or 3 volumes later or next day.

cycling pump.

Well ID MW-3 SAMPLING EVENT DATA SHEET (fill out completely) PROJECT. **EVENT** SAMPLER DATE IWL Well / Hydrologic statistics Pump Rate Action Time (low yield) Well type ___ (MW, EW, etc.) Start pump/Begin 1:08 ď diameter SWL. equals 0.167 gal/ft. casing (if above screen) 1:28 Stop $\Delta = 11.54$ 132 Sampled TOP (Final IWL) **Purge Calculation** $\frac{1.9}{2}$ gals x 3 $\frac{5.7}{2}$ gals. SWL (if in screen) SWL to BOP or\
packer to BOP purge volume 3 casings one volume 55.56 BOP Head purge calculation (Airlift only) measured gal/ft. x _____ ft. = T.D. gals. Packer to SWL Equipment Used / Sampling Method / Description of Event: Actual gallons purged Purged / Developed with: Waterna HydroliftII Actual volumes purged 38" Dedicated Poly MY Well yield ⊕ (see below) 42223 COC # Sampled with: 14" Disposable Poly
Additional comments: No hubbles Sample I.D. <u>Analysis</u> Lab ASL MW-3 Weather Condition TEMP/ Gallons purged * °C)/ °F EC PH TURBIDITY (circle one) (us/cm) (NTU) 1. 2. Э. 6.80 4. 5. 6. 7.

8.

Take measurement at ⊕ HY - Minimal approximate each W.L. drop. casing volume purged

MY - WL drop - able to purge 3 LY - able to purge 3 volumes during on setting by reducing pump rate or cycling pump.

volumes by returning later or next day.

VLY - Minimal recharge unable to purge 3 volumes

(fill out completely) Pilot Chem DATE 10/29/07 **PROJECT EVENT SAMPLER** Well / Hydrologic statistics Pump Rate Action Time (low yield) Well type ___ (MW, EW, etc.) Start pump/Begin 12:31 ddiameter equals 1.05 SWL _ gal/ft. casing (if above screen) 12:56 Stop 12:59 D= 9.41 Sampled TOP (Final IWL) Purge Calculation 9.8 gals x3 29.4 gals. SWL (if in screen) SWL to BOP or packer to BOP purge volume 3 casings one volume 66.67 BOP Head purge calculation (Airlift only) measured 76.08 gal/ft. x _____ gals. Packer to SWL Equipment Used / Sampling Method / Description of Event: Actual gallons purged Purged / Developed with: Waterna HydroliftII 58 Dedicated Poly Actual volumes purged Well yield \oplus (see below)_ 42223 COC_# Sampled with: 14" Disposable Poly
Additional comments: Nor hubbles Sample I.D. Analysis MW-4 Weather Condition Gallons purged * TEMP(O/°F ΕĊ PH TURBIDITY (circle one) (us / cm) (NTU) 1. 2. Э. 34 4. 5. 6. 7. 8. * Take measurement at ⊕ HY - Minimal MY - WL drop - able to purge 3 LY - able to purge 3 VLY - Minimal recharge approximate each unable to purge

į

casing volume purged

W.L. drop.

volumes during on setting by reducing pump rate or cycling pump.

volumes by returning later or next day.

³ volumes

PROJECT EVEN	SAM	IPLER-3	SM	DATE				
Well / Hydrologic statistics	_	Action		Pump Rate	IWL (low yield)			
Well type (MV, EW, etc.)			mp/Begin	9:02		-,		
			-	<u> </u>				
	117		:					
SWL diameter equals	4 65 gal/ft, casing							
(if above screen) equals =	3							
		Ct		G.C1				
D= 19.16		Stop Sample	 ed	9:55				
11.16	TOP	(Final		1.77				
				Purge C	Calculation	7		
SWL (if in screen)		-				s x 3 <u>37.2</u> gals.		
52.74	ВОР			SWL to BOP or acker to BOP		purge volume 3 casings		
measured	DOF .			-	alculation (Airlif	= *		
T.D. 7/1.9			_ gai/ft	. X Packer	<u>.</u> ft. =	gals.		
Equipment Used / Sampling Method / Des	cription of Event:		۰			27		
Purged / Developed with:	•			gallons		20		
Waterm HydroliftII 38 Dedicated Poly			Actual volumes purged					
B Dedicated Poly		ļ	Well yield ⊕ MY (see below)					
<i>,</i> I		Ì	COC #		42222			
Sampled with: 15" Novemble Pi			Sample		Analysis	<u>Lab</u>		
Sampled with: 19" Disposable Poly Additional comments: No hubban	·		MW-	<u>ユ</u>		1776		
Additional comments: No hubble			·	· .				
		Ì						
Weather Condition AM Clean						· .		
Gallons purged * TEMP(°C)°F	EC	 PH	T1	JRBIDIT	/ \			
(circle one)	(us / cm)			(NTU)	' DO	ORA		
1. 12.4 20.4	0.16	7.04		69	273	-10		
2. 24.8 20.4	0.16	7.14		20	12/1	12		
3. 37.2 26.6	0.10	7.05		~ 30	200	44		
4.	0.6	1.07		70	7.73			
5.				 				
6.		·			·			
7.				,				
8.								
* Take measurement at ① HY - Minima	1		1		1	i c		

casing volume purged

by reducing pump rate or cycling pump.

later or next day.

(fill out completely) DATE 10/30/07 EVENT _ SAMPLER PROJECT. īWī Well / Hydrologic statistics Pump Rate Action Time (low yield) Well type ___ (MW, EW, etc.) Start pump/Begin 10:04 ddiameter_ SWL equals _65 gal/ft. casing (if above screen) Stop 10:38 D= 18.01 Sampled 10:41 TOP (Final IWL) **Purge Calculation** 11.7 gals x 3 $\frac{35}{35}$ SWL gal/ft. _____ ft. (if in screen) SWL to BOP or packer to BOP purge volume one volume 3 casings BOP Head purge calculation (Airlift only) measured gal/ft. x _____ ft. = T.D. gals. Packer to SWL Equipment Used / Sampling Method / Description of Event: Actual gallons purged Purged / Developed with: Watern Hydrolift II Actual volumes purged 38" Dedicated Poly MY Well yield ① (see below) 42222 COC # Sampled with: 14" Disposable Poly
Additional comments: No hillier Sample I.D. _Analysis_ Lab MW-6 Weather Condition AM (loon. TEMP®/°F Gallons purged * EC PH TURBIDITY ORA (circle one) (us / cm) (NTU) 20.3 1. 3.00 2. 20.7 3. 7.04 20,5 4. 5. 6. 7. 8.

Take measurement at ⊕ HY - Minimal approximate each W.L. drop. casing volume purged

TANK!

MY - WL drop - able to purge 3 LY - able to purge 3 volumes during on setting by reducing pump rate or cycling pump.

volumes by returning later or next day.

VLY - Minimal recharge unable to purge 3 volumes

SAMPLING EVENT DATA SHEET

Well ID MW-7

(fill out completely) DATE 10/30/07 EVENT -PROJECT _ SAMPLER-**IWL** Well / Hydrologic statistics Pump Rate Time Action (low yield) Well, type. Start pump/Begin 1:51 (MW, EW, etc.) ď SWL_ (if above screen) D=18.69 Stop Sampled TOP (Final IWL) **Purge Calculation** 2 gals x 3 36 (if in screen) SWL to BOP or packer to BOP purge volume one volume BOP Head purge calculation (Airlift only) measured gal/ft. x _____ ft. = gals. T.D. 73.3 Packer to SWL Equipment Used / Sampling Method / Description of Event: Actual gallons purged Purged / Developed with: Waterna HydroliAII Actual volumes purged 38" Dedicated Poly Well yield (see below) 42222 COC # Sample I.D. Analysis Sampled with: 4" Disposable Poly Additional comments: Weather Condition TEMÉ °C'/ °F Gallons purged * EC PH TURBIDITY (circle one) (us / cm) (NTU) 1. 2. Ġ. 4. 5. 6. 7. 3. * Take measurement at ⊕ HY - Minimal VLY - Minimal recharge -MY - WL drop - able to purge 3 LY - able to purge 3 approximate each volumes during on setting unable to purge volumes by returning W.L. drop. by reducing pump rate or casing volume purged 3 volumes

cycling pump.

later or next day.

Well ID MW-9

PROJECT	EVENT		SAN	IPLER 3	SM	/ DATE	= 10/30/07		
Well / Hydrologic statistics				on	Time	1	IWL (low yield)		
		/pe /V, etc.)		np/Begin	10:51				
	(0), 1								
		. //							
SWL	diameter	니" gal/ft. casing	-						
(if above screen)	equals 🗜	gaint. Casing							
A m Nés			Stop		11:34				
$\nabla = \mathcal{D}_{0r}$	т	OP	Sample (Final		11:37				
			(Tillal)		Purge (L Calculation			
SWL (if in screen)				gal/ft.		ft. 13 ga	$\frac{3}{2}$ gals.		
· · · · · · · · · · · · · · · · · · ·	-		َ لِــٰ اِــٰ		SWL to BOP or	one volume	purge volume 3 casings		
673.14	E	OP				alculation (Airli	<u>~</u>		
measured T.D.					. X	•	gals.		
73.7		··	<u> </u>		Packer		 		
Equipment Used / Sampling M Purged / Developed with:	ethod / Desci	iption of Event:		Actual	gallons	purged	31		
	7T			Actual volumes purged					
Waterna Hydrolif 38" Dedicated 1) ;			Well yield ⊕ MY					
in Dearcated 1	017			(see below)) .				
				COC #		41111	1 -6		
Sampled with: 1 Spos	able Poly			Sample MW ~		Analysis	Lab ASL		
Sampled with: 19 Dispose Additional comments: Suplice Will, Mar humber	at Sample	1 tays @	This		· ·				
Well, no hubbles	CAG 2011	~ 104/		^	· ·	·			
									
Weather Condition (M) ()	EV)			:					
Gallons purged * TEI	MP(°C)/°F	EC	PH		JRBIDIT	Y NM.	011		
ţt (cir	cle one)	(us / cm)			(NTU)	$\frac{1}{2}$	ORP		
1. 13 2	1. (0.19	7.05		37	2.50	-62		
2. 26 2	1.4	0.16	7.39		10	3.72	-97		
3. 39 2	1.1	0.16	7.09		 3 [3.45	-85		
4.		V 10 .	<u>-</u>		<u>(</u>				
5.					· · · · · · · · · · · · · · · · · · ·				
6.			·		·				
7.									
3.									
* Take measurement at 🕀	HY - Minimal	MY - WL drop	- able to pure	ne 3 IY-	able to nu	irae 3 VI	Y - Minimal recharge -		

approximate each casing volume purged

W.L. drop.

volumes during on setting by reducing pump rate or cycling pump.

volumes by returning later or next day.

SAMPLING EVENT DATA SHEET

Well ID MW-9

PROJECT Plat Chem. EVENT SAMPLER M DATE 10/29/07									
Manual the deal of the state of									
Well / Hyc	Well / Hydrologic statistics Well, type					Pump Rate	(low yield)		
1	(MW, EW,	etc.)	Start pump/	Begin	11:34				
	ii	11							
SWL	diameter equals -65			-					
(if above screen)	equals 67	_ gal/π. casing							
			Stop		12:11				
$ \triangle = 6.17$			Sampled		12:14				
	TOI	-	(Final IW						
	-]	Purge C	alculation	2: 6		
L SWL (if in screen)				gal/ft.		ft. 10.5 ga	als x 3 <u>31.5</u> gals.		
54.93			···	∫ S\ pa	ML to BOP or cker to BOP	one volume	purge volume 3 casings		
	BOI			Head	purge ca	lculation (Airl			
measured T.D.						ft. =			
71.1					Packer t				
Equipment Used / Sam	pling Method / Descript	ion of Event:	. Δ	ctual d	gallons p	nuraed	31		
Purged / Developed with			}				\$.3		
Waterna Ho 38" Dedica	dicitIT					purged	9. ~		
- 38 Dedica	Ted Poly		\(\int\)	Vell yie ee below)	eld ⊕		44.		
<u></u>	,			DC #		42223			
	r. N.		-	ample I.		Analysis	Lab		
Sampled with: 4	isposable loly			MW-E			ASL		
Sampled with: 1/4 /] Additional comments:	Replace Foot 1	lalve .				·			
	No lubbles	,					•		
	31								
Weather Condition (AM	Clear		-				· ·		
Gallons purged *	6	EC	· PH	711	RBIDITY	/ \ \			
Calloria purgeu	TEMP(°C) / °F ち/ル (circle one)	(HS /SM)	ΓΠ . <u> </u>		NTU)	1 DO	ORA		
1. 10	2	1 22	5.42	 ;	7-	70	189		
	04.5	<u>ブ・ムフ</u>	1.01		12	<u> </u>	·		
	24.8).24	6.86		50 <u> </u>	1.71	138		
3. 31	23.1	0.24	6.81	΄ĵ΄	<i>3(</i>)	7.47	151		
4.		-							
5.									
6.			-						
7.		.			 -				
3.				<u> </u>					
-									
* Take measurement at HY - Minimal MY - WL drop - able to purge 3 LY - able to purge 3 VLY - Minimal recharge - approximate each W.L. drop. volumes during on setting volumes by returning unable to purge									
casing volume purge	ed		ng pump rate or		later or ne		3 volumes		

Well ID MW-10 SAMPLING EVENT DATA SHEET (fill out completely) DATE **EVENT** SAMPLER **PROJECT** IWL Well / Hydrologic statistics Pump Rate Action Time (low yield) Well type ___ (MW, EW, etc.) Start pump/Begin 12:53 ď SWL. equals . gal/ft. casing (if above screen) Stop :33 D= 15.51 Sampled TOP (Final IWL **Purge Calculation** SWL _ gals x 3 _ (if in screen) SWL to BOP or packer to BOP 54.49 one volume **BOP** Head purge calculation (Airlift only) measured gal/ft. x _ T.D. _ Packer to SWL Equipment Used / Sampling Method / Description of Event: Actual gallons purged Purged / Developed with: Waterna HydroliffII Actual volumes purged 38" Dedicated Poly Well yield ⊕ (see below) 4225 COC # Sampled with: 1/4" Disposable Poly

Additional comments: Went dry @ 15 gallons, Analysis Sample I.D. <u>Lab</u> Weather Condition TEMP/C/1°F Gallons purged * EC PН TURBIDITY (circle one) (us / cm) (NTU) 1. 0.46 60 2. 150 Ġ. 4. 5. 6. 7.

3.

^{*} Take measurement at ① HY - Minimal approximate each W.L. drop. casing volume purged

MY - WL drop - able to purge 3 LY - able to purge 3 volumes during on setting by reducing pump rate or cycling pump.

volumes by returning later or next day.

VLY - Minimal recharge unable to purge 3 volumes

(fill out completely) Pilot Chelly EVENT _ DATE 10/30/07 PROJECT _ SAMPLER-IWL Well / Hydrologic statistics Time | Pump Rate Action (low yield) Well type ___ (MW, EW, etc.) Start pump/Begin 11:54 diameter_ SWL_ equals _65 gal/ft. casing (if above screen) Stop 12:34 $\Delta = 20.49$ Sampled 12:38 TOP (Final IWL) Purge Calculation 13.3 gals x 3 40 gal/ft. _____ ft. (if in screen) SWL to BOP or packer to BOP purge valume 53.11 BOP Head purge calculation (Airlift only) measured gal/ft. x _____ ft. =gals. Packer to SWL Equipment Used / Sampling Method / Description of Event: Actual gallons purged Purged / Developed with: Waterna Hydrolift II Actual volumes purged 38" Dedicated Poly Well yield ⊕ (see below) 42222 COC # Sampled with: 14" Disposable Poly

Additional comments: Nor habbles

Went dry @-32 ged; hower and sample Sample I.D. **Analysis** MW-11 Weather Condition AM TEMP C/ °F Gallons purged * PH EC TURBIDITY (circle one) (us / cm) (NTU) 1. 2. (). ZZ 3. ().22 4. 5. 6. 7. 3

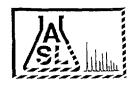
1

A. 18. 19. 19.

ġ

Mary and

^{*} Take measurement at ⊕ HY - Minimal approximate each W.L. drop. casing volume purged


MY - WL drop - able to purge 3 LY - able to purge 3 volumes during on setting by reducing pump rate or cycling pump.

volumes by returning later or next day.

VLY - Minimal recharge unable to purge 3 volumes

Appendix B

Groundwater
Laboratory Analytical
Results, Quality
Control Reports, and
Chain-of-Custody

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

Ordered By

Pacific Edge Engineering, Inc. 26691 Plaza, Suite 270 Mission Viejo, CA 92691

Telephone

(949) 470-1937

Attn

Craig Stolz

	ımber	ar adsidel 64% 25.	飲服・もると	artin and the second of the	4 4 64 7 7 2 4 1	's de propé. Editores	fa i digita Galijerija	
E - 141	ate F	1 115 (Park 1767)	Co. Con printing of the	Samuel Company		211 - 22 - 2 2 2 2		
D	ate F	lepor	ted	11/	06/2	007		

Job Number	Ordered	Client
35729	10/30/2007	PACFIC

Project ID:

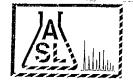
PILOT CHEMICAL

Project Name:

Site:

11756 Burke Street

Santa Fe Springs, CA


Enclosed are the results of analyses on 8 samples analyzed as specified on attached chain of custody.

Amolk MOLKY Brar Laboratory Manager Rojert G. Araghi
Laboratory Director

American Scientific Laboratories, LLC (ASL) accepts sample materials from clients for analysis with the assumption that all of the information provided to ASL verbally or in writing by our clients (and/or their agents), regarding samples being submitted to ASL; is complete and accurate. ASL accepts all samples subject to the following conditions:

1) ASL is not responsible for verifying any client-provided information regarding any samples submitted to the laboratory.

2) ASL is not responsible for any consequences resulting from any inaccuracies; omissions, or misrepresentations contained in client-provided information regarding samples submitted to the laboratory.

2520 N. San Fernando Road, LA, CA 90065 Tel: (323) 223-9700 • Fax: (323) 223-9500

	ป		1
Page		Of	

COC# Nº 42222 GLOBAL	. ID	<i>E REP</i>	ORT: 🗆 PL	DF 🗆 E	DF	$\Box E$	DD	ASL .	IOB# ₋	3570	29
Company: Pacific Edge Engine		Re	eport Fg:							QUEST	
COC# No 42222 GLOBAL Company: Pacific Edge Enginee Address: Addr	Project Name:	Ac	ddress:								
Mission Visio, CA. 92691	Site Address:	In	voice To:		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						
Mission Visjo, (A, 9269) Telephone: 949 470 1937 Fax: 949 470 0943 Special Instruction:	Sign to Fr Springs, (A	ddress:		wrfacterits) ese	(S)				
					7		*				
E-mail:	Project Manager: (raig 5)012	P.	.O.#:		425.	Ē	9				
T E Lab ID Sample ID	DESCRIPTION Cor	ntainer(s) Type	Matrix Pre	eservation							Remarks
1 207466 MW-1	10130/07 9:91 3	VOA Amer Elastic	Hall no	ONE '	XX	X	X				
2207467 MW-9	9:55				$\times _{\times}$	\times	X				
3207468 MW-6	10-41				$\times \times$	X	7				
4 207469 MW-8	11:37			•	$\mathbb{X} \times$	X	X				
5 207490 MW-11	12:38 3				$X \times$	X	\times				
¢ 207471 MW-10	1:38 3				$\times \times$	X	X		ļ		
9 207492 MW-7	2.3> 1	V			XX	X	X_{\perp}				
			<u> </u>			-			 		_
8 207473 DUP	The state of the s	JOA					X				
Collected By:	Date V/X/// Time	1 -	Relinquished By:		•		Date		Time		TAT
Relinquished By:	Date 10/30/07Time	3 15:00 F	Received For Laboratory	all	200		Date /	/30/0	7 Time	15:00	⊠ Normal □ Rush
Received By:	Date Time) C	Condition of Sam	nple:				•			LINUSII

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel; (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Pacific Edge Engineering, Inc. 26691 Plaza, Suite 270 Mission Viejo, CA 92691-

Telephone: (949)470-1937 Craig Stolz Attn:

Page:

Project ID:

PILOT CHEMICAL

11756 Burke Street Santa Fe Springs, CA

ASL Job Number	Submitted	Client
35729	10/30/2007	PACFIC

Method: 601/602, Halogenated and Aromatic Volatile Compounds

Our Lab I.D.			207468	207469	207470	207472	207473
Client Sample I.D.			MW-6	MW-8	MW-11	MW-7	DUP
Date Sampled			10/30/2007	10/30/2007	10/30/2007	10/30/2007	10/30/2007
Date Prepared			11/01/2007	11/01/2007	11/01/2007	11/01/2007	11/02/2007
Preparation Method							
Date Analyzed			11/01/2007	11/01/2007	11/01/2007	11/01/2007	11/02/2007
Matrix			Water	Water	Water	Water	Water
Units			ug/L	ug/L	ug/L	ug/L	ug/L
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Benzene	0.064	0.500	ND	, ND	ND	ND	0.8
Bromobenzene (Phenyl bromide)	0.170	0.500	ND	ND	ND	ND	ND
Bromodichloromethane	0.070	0.500	ND	ND	ND	ND	ND
(Dichlorobromomethane)							
Bromoform (Tribromomethane)	0.200	0.500	ND	ND	ND	ND	ND
Bromomethane (Methyl bromide)	0.114	0.500	· ND	ND	ND	ND	ND
Carbon tetrachloride (Tetrachloromethane)	0.062	0.500	23.6	3.0	0.36J	0.29J	3.3
Chlorobenzene	0.060	0.500	ND	ND	ND	ND	ND
Chlorodibromomethane	0.080	0.500	ND	ND	ND	ND	ND
(Dibromochloromethane)		ļ			1		
Chloroethane	0.103	1.000	ND	ND	ND	ND	ND
Chloroform (Trichloromethane)	0.062	0.500	26.4	1.0.2	3.4	0.9	10.7
Chloromethane (Methyl chloride)	0.066	0.500	ND	ND	ND .	ND	ND
Dibromomethane	0.081	0.500	ND	ND	ND	ND	ND
1,2-Dichlorobenzene (o-Dichlorobenzene)	0.114	0.500	ND	ND	ND	ND	ND
1,3-Dichlorobenzene (m-Dichlorobenzene)	0.125	0.500	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	0.146	0.500	ND	ND	ND	ND	ND
Dichlorodifluoromethane	0.070	1.000	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.048	0.500	ND	ND	0.27J	ND	ND
1,2-Dichloroethane	0.077	0.500	6.4	19.1	12.4	36.7	19.5
1,1-Dichloroethene (1,1-Dichloroethylene)	0.046	0.500	0.265	0.06J	1.8	ND	ND
cis-1,2-Dichloroethene	0.050	0.500	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	0.024	0.500	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.092	0.500	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.085	0.500	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.099	0.500	ND	ND	ND	ND	ND
Ethylbenzene	0.074	0.500	ND	ND	ND	ND	ND
Methylene chloride (Dichloromethane,	0.333	1.000	ND	ND	ND	ND	ND
DCM)			Į.				

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

Project ID:

PILOT CHEMICAL

ASL Job Number	Submitted	Client
35729	10/30/2007	PACFIC

Method: 601/602, Halogenated and Aromatic Volatile Compounds

QC Batch No: 110107-1

Contract The Contract			007460	307460	207470	207472	207472
Our Lab I.D.			207468	207469	207470	207472	207473
Client Sample I.D.			MW-6	MW-8	MW-11	MW-7	DUP
Qate Sampled			10/30/2007	10/30/2007	10/30/2007	10/30/2007	10/30/2007
Date Prepared			11/01/2007	11/01/2007	11/01/2007	11/01/2007	11/02/2007
Preparation Method					_	ŀ	
Date Analyzed			11/01/2007	11/01/2007	11/01/2007	11/01/2007	11/02/2007
Matrix			Water	Water	Water	Water	Water
Units			ug/L	ug/L	ug/L	ug/L	ug/L
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
1,1,1,2-Tetrachloroethane	0.060	0.500	· ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.182	0.500	ND	ND	ND	ND	ND
Tetrachloroethene (Tetrachloroethylene)	0.093	0.500	7.1	1.9	18.7	0.9	2.1
Toluene (Methyl benzene)	0.092	0.500	ND	ND	ND	ND	24.2
l,l,l-Trichloroethane	0.062	0.500	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	0.105	0.500	ND	ND	ND	ND	ND
Trichloroethene (TCE)	0.046	0.500	2.0	1.4	3.1	1.8	1.6
Trichlorofluoromethane	0.103	0.500	ND	ND	ND	ND	ND
Vinyl chloride (Chloroethene)	0.060	0.500	ND	ND	ND	ND	ND
Xylenes, total	0.059	1.000	ND	59.5	ND	ND	116
<u> </u>	0.059	1.000	ND	59.5	ND	ND	116

	•	•				
Our Lab LD.		207468	207469	207470	207472	207473
Surrogates	% Rec.Limit	% Rec.				
Surrogate Percent Recovery				:		
Bromofluorobenzene	70-120	112	112	114	119	105

QUALITY CONTROL REPORT

			do Date		,, ,			
	MS	MS DUP	RPD	MS/MSD	MS RPD			
Analytes	% REC	% REC	%	% Limit	% Limit			
Benzene	96	99	3.1	75-120	15			
Chlorobenzene	99	103	4.0	75-120	15			
1,1-Dichloroethene	94	98	4.2	75-120	15			
(1,1-Dichloroethylene)								
Toluene (Methyl benzene)	100	103	3.0	75-120	15			
Trichloroethene (TCE)	106	110	3.7	75-120	15		T	

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles. CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Site

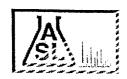
Pacific Edge Engineering, Inc.	:-'.		
26691 Plaza, Suite 270	14. <u>1</u> 		
Mission Viejo, CA 92691-	·: `	4,7	

Telephone: (949)470-1937 Attn: Craig Stolz

Page:

4

Project ID:


PILOT CHEMICAL

11756 Burke Street	
Santa Fe Springs, CA	

ASL Job Number	Submitted	Client
35729	10/30/2007	PACFIC

Method: 601/602, Halogenated and Aromatic Volatile Compounds

		QC Batch N	o: 110107-1				
Our Lab I.D.			207467				
Client Sample I.D.			MW-5				
Date Sampled			10/30/2007				
Date Prepared			11/01/2007				
Preparation Method						-	
Date Analyzed			11/01/2007				
Matrix			Water				
Units			ug/L				
Dilution Factor			5				
Analytes	MDL	PQL	Results		1,704 11		
Benzene	0.320	2.500	ND				
Bromobenzene (Phenyl bromide)	0.850	2.500	ND		,		
Bromodichloromethane	0.350	2.500	ND				
(Dichlorobromomethane)					İ		
Bromoform (Tribromomethane)	1.000	2.500	ND				
Bromomethane (Methyl bromide)	0.570	2.500	ND				
Carbon tetrachloride (Tetrachloromethane)	0.310	2.500	78				
Chlorobenzene	0.300	2.500	ND				
Chlorodibromomethane	0.400	2.500	ND			1	
(Dibromochloromethane)			1			1.	
Chloroethane	0.515	5	ND				
Chloroform (Trichloromethane)	0.310	2.500	41				
Chloromethane (Methyl chloride)	0.330	2.500	ND				
Dibromomethane	0.405	2.500	ND				
1,2-Dichlorobenzene (o-Dichlorobenzene)	0.570	2.500	ND				
1,3-Dichlorobenzene (m-Dichlorobenzene)	0.625	2.500	ND				
1,4-Dichlorobenzene	0.730	2.500	ND	}			
Dichlorodifluoromethane	0.350	5	ND				
1,1-Dichloroethane	0.240	2.500	ND				
1,2-Dichloroethane	0.385	2.500	ND				
1,1-Dichloroethene (1,1-Dichloroethylene)	0.230	2.500	ND				
cis-1,2-Dichloroethene	0.250	2.500	ND				
trans-1,2-Dichloroethene	0.120	2.500	ND				
1,2-Dichloropropane	0.460	2.500	ND				
cis-1,3-Dichloropropene	0.425	2.500	ND				1
trans-1,3-Dichloropropene	0.495	2.500	ND				
Ethylbenzene	0.370	2.500	ND				
Methylene chloride (Dichloromethane,	1.665	5	ND				
DCM)		1			}		

2520 N. San Fernando Rd., Los Angeles. CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

5

Project ID:

PILOT CHEMICAL

ASL Job Number	Submitted	Client
35729	10/30/2007	PACFIC

Method: 601/602, Halogenated and Aromatic Volatile Compounds


QC Batch No: 110107-1

		QC Datch N	O. 110107-1		
Our Lab I.D.			207467		
Client Sample I.D.			MW-5		
Qate Sampled			10/30/2007		
Date Prepared			11/01/2007		
Preparation Method					
Date Analyzed			11/01/2007		
Matrix			Water		
Units			ug/L		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
1,1,1,2-Tetrachloroethane	. 0.300	2.500	ND		
1,1,2,2-Tetrachloroethane	0.910	2.500	ND		
Tetrachloroethene (Tetrachloroethylene)	0.465	2.500	4		
Toluene (Methyl benzene)	0.460	2.500	ND		
1,1,1-Trichloroethane	0.310	2.500	ND		
1,1,2-Trichloroethane	0.525	2.500	ND		
Trichloroethene (TCE)	0.230	2.500	1.6J		
Trichlorofluoromethane	0.515	2.500	ND		
Vinyl chloride (Chloroethene)	0.300	2.500	ND		
Xylenes, total	0.295	. 5	6		

Our Lab LD.	i kalturit -	207467			
Surrogates	% Rec.Limit	% Rec.	1		
Surrogate Percent Recovery	Telefizieri				
Bromofluorobenzene	70-120	92			

QUALITY CONTROL REPORT

	MS	MS DUP	RPD	MS/MSD	MS RPD			
Analytes	% REC	% REC	%	% Limit	% Limit			
Benzene	96	99	3.1	75-120	15		i	
Chlorobenzene	99	103	4.0	75-120	15			
1,1-Dichloroethene	94	98	4.2	75-120	15			
(1,1-Dichloroethylene)								
Toluene (Methyl benzene)	100	103	3.0	75-120	15			
Trichloroethene (TCE)	106	110	3.7	75-120	15	· · · ·		

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Pacific Edge Engineering, Inc. 26691 Plaza, Suite 270 Mission Viejo, CA 92691-

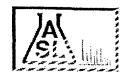
Telephone: (949)470-1937 Attn: Craig Stolz

Page:

6

Project ID:

PILOT CHEMICAL


Site	S	i	t	e
------	---	---	---	---

1 i 756 Burke Street Santa Fe Springs, CA

ASL Job Number	Submitted	Client
35729	10/30/2007	PACFIC

Method: 601/602, Halogenated and Aromatic Volatile Compounds

Own Take This second se	(a) (7) (a) (a) (a) (b) (b) (b)		207466		<u> </u>	H 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Taring the State of
Our Lab I.D.							Teal Ask A.
Client Sample I.D.			MW-1				
Date Sampled	· · · · · · · · · · · · · · · · · · ·		10/30/2007				
Date Prepared			11/01/2007	<u> </u>			
Preparation Method			14 (04 (0007				
Date Analyzed	 		11/01/2007			 	
Matrix		<u> </u>	Water			 	
Units			ug/L				-
Dilution Factor		779	1000		··		
Analytes	MDL	PQL	Results	1.5			
Benzene	64	500	ND				
Bromobenzene (Phenyl bromide)	170	500	ND				
Bromodichloromethane	70	500	ND	}	l		
(Dichlorobromomethane)							
Bromoform (Tribromomethane)	200	500	. ND				
Bromomethane (Methyl bromide)	114	500	MD				
Carbon tetrachloride (Tetrachloromethane)	62	500	ND				
Chlorobenzene	60	500	ND				
Chlorodibromomethane	80	500	ND				
(Dibromochloromethane)					İ		
Chloroethane	103	1000	ND				
Chloroform (Trichloromethane)	62	500	ND				
Chloromethane (Methyl chloride)	66	500	ND				
Dibromomethane	81	500	ND				
1,2-Dichlorobenzene (o-Dichlorobenzene)	114	500	ND				
1,3-Dichlorobenzene (m-Dichlorobenzene)	125	500	ND				
1,4-Dichlorobenzene	146	500	ND				
Dichlorodifluoromethane	70	1000	ND				
1,1-Dichloroethane	48	500	ND				
1,2-Dichloroethane	77	500	802	<u> </u>		1	
1,1-Dichloroethene (1,1-Dichloroethylene)	46	500	ND	<u> </u>			<u> </u>
cis-1,2-Dichloroethene	50	500	ND			†	
trans-1,2-Dichloroethene	24	500	ND	İ		1	
1,2-Dichloropropane	92	500	ND			İ	
cis-1,3-Dichloropropene	85	500	ND				
trans-1,3-Dichloropropene	99	500	ND	!			i
Ethylbenzene	74	500	16100	1			
Methylene chloride (Dichloromethane,	333	1000	ND				
DCM)				1			

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

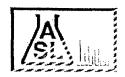
7

Project ID:

PILOT CHEMICAL

ASL Job Number	Submitted	Client
35729	10/30/2007	PACFIC

Method: 601/602, Halogenated and Aromatic Volatile Compounds


QC Batch No: 110107-1

Our Lab I.D.			207466			
Client Sample I.D.			MW-1			
Date Sampled			10/30/2007			
Date Prepared			11/01/2007			
Preparation Method						
Date Analyzed			11/01/2007			
Matrix			Water			
Units			ug/L			
Dilution Factor			1000			
Analytes	MDL	PQL	Results	14	:	
1,1,1,2-Tetrachloroethane	60	500	ND			
1,1,2,2-Tetrachloroethane	182	500	ND			
Tetrachloroethene (Tetrachloroethylene)	93	500	ND			
Toluene (Methyl benzene)	92	500	57100			
1,1,1-Trichloroethane	62	500	ND			
1,1,2-Trichloroethane	105	500	ND			
Trichloroethene (TCE)	46	500	60J			
Trichlorofluoromethane	103	500	ND			
Vinyl chloride (Chloroethene)	60	500	ND			
Xylenes, total	59	1000	93600			

Our Lab I.D.		207466		¥ =	
Surrogates	% Rec.Limit	% Rec.			: :
Surrogate Percent Recovery					
Bromofluorobenzene	70-120	99			

QUALITY CONTROL REPORT

			~~ _~					_
	MS	MS DUP	RPD	MS/MSD	MS RPD			
Analytes	% REC	% REC	%	% Limit	% Limit			
Benzene	96	99	3.1	75-120	15			
Chlorobenzene	99	103	4.0	75-120	15			
1,1-Dichloroethene	94	98	4.2	75-120	15			
(1,1-Dichloroethylene)					,	}		ì
Toluene (Methyl benzene)	100	103	3.0	75-120	15			
Trichloroethene (TCE)	106	110	3.7	75-120	1.5			

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles. CA 90065 Tel: (323) 223-9700 Fux: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Pacific Edge Engineering, Inc. 26691 Plaza, Suite 270 Mission Viejo, CA 92691-

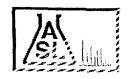
Telephone: (949)470-1937 Attn: Craig Stolz

Page:

8

Project ID:

PILOT CHEMICAL


Sit	e
-----	---

11756 Burke Street	
Santa Fe Springs, CA	1.
	Alakii na sa,

ASL Job Number	Submitted	Client
35729	10/30/2007	PACFIC

Method: 601/602, Halogenated and Aromatic Volatile Compounds

			o: 110507-2				
Our Lab I.D.			207471				likih tipul t
Client Sample I.D.			MW-10				
Date Sampled			10/30/2007				
Date Prepared			11/06/2007				
Preparation Method							
Date Analyzed			11/06/2007				
Matrix	_		Water				
Units			ug/L				
Dilution Factor			250				
Analytes	MDL	PQL	Results	1 2 2 2 2 1			any ya Likili i
Benzene	16	125	ND				
Bromobenzene (Phenyl bromide)	42	125	ND				
Bromodichloromethane	17	125	ND				
(Dichlorobromomethane)					ļ		
Bromoform (Tribromomethane)	. 50	125	ND				
Bromomethane (Methyl bromide)	28	125	ND			<u> </u>	
Carbon tetrachloride (Tetrachloromethane)	15	125	ND				
Chlorobenzene	15	125	ND				
Chlorodibromomethane	20	125	ND	-			
(Dibromochloromethane)							
Chloroethane	25	250	ND				
Chloroform (Trichloromethane)	15	125	ND				<u> </u>
Chloromethane (Methyl chloride)	16	125	ND				
Dibromomethane	20	125	ND			-	
1,2-Dichlorobenzene (o-Dichlorobenzene)	28	125	ND		1	1	
1,3-Dichlorobenzene (m-Dichlorobenzene)	31	125	ND				
1,4-Dichlorobenzene	36	125	ND				
Dichlorodifluoromethane	17	250	ND				
1,1-Dichloroethane	12	125	ND				
1,2-Dichloroethane	19	125	5000			1	
1,1-Dichloroethene (1,1-Dichloroethylene)	11	125	ND		-		
cis-1,2-Dichloroethene	12	125	ND				
trans-1,2-Dichloroethene	6	125	ND				<u>.</u>
1,2-Dichloropropane	23	125	ND			 	
cis-1,3-Dichloropropene	21	125	ND	·-··		1	
trans-1,3-Dichloropropene	24	125	ND			1	<u> </u>
Ethylbenzene	18	125	ND	-,	 	†	
	+	250			 	!	+
Methylene chloride (Dichloromethane,	83	250	ND		1	1	1

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

Project ID:

PILOT CHEMICAL

ASL Job N	umber	Submitted	Client
3572	29	10/30/2007	PACFIC

Method: 601/602, Halogenated and Aromatic Volatile Compounds

QC Batch No: 110507-2

		QC Batch N	0. 110307-2				
Our Lab I.D.			207471			电子电流 。	
Client Sample I.D.			MW-10				
Date Sampled	Date Sampled						
Date Prepared			11/06/2007				
Preparation Method							
Date Analyzed			11/06/2007				
Matrix			Water				
Units			ug/L				
Dilution Factor			250				1
Analytes	MDL	PQL	Results	:			e de la company
1,1,1,2-Tetrachloroethane	15	125	ND				
1,1,2,2-Tetrachloroethane	4.5	125	ND				
Tetrachloroethene (Tetrachloroethylene)	23	125	ND				
Toluene (Methyl benzene)	23	125	ND				
1,1,1-Trichloroethane	15	125	ND				
1,1,2-Trichloroethane	26	125	ND	1	T		
Trichloroethene (TCE)	11	125	ND				
Trichlorofluoromethane	25	125	ND				
Vinyl chloride (Chloroethene)	15	125	ND				
Xylenes, total	14	250	1500	1.			

Our Lab I.D.		207471	12.7		tanta (f. jh.)
Surrogates	% Rec.Limit	% Rec.			
Surrogate Percent Recovery				i ali kaa	
Bromofluorobenzene	70-120	116]

QUALITY CONTROL REPORT

	MS	MS DUP	RPD	MS/MSD	MS RPD			
Analytes	% REC	% REC	%	% Limit	% Limit			
Benzene	99	96	3.1	75-120	15			
Chlorobenzene	105	101	3.9	75-120	15			
1,1-Dichloroethene	108	98	9.7	75-120	1.5			
(1,1-Dichloroethylene)		1		1		1		
Toluene (Methyl benzene)	103	100	3.0	75-120	15			
Trichloroethene (TCE)	110	110	<1	75-120	15			

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

Ordered By

Telephone

(949) 470-1937

Attn

Craig Stolz

Number of	。 20、 - 网络松桃香属 12、 14、 14、 14、 14、 14、 14、 14、 14、 14、 14	
	red: 10/29/2007	
Date Repor	ted: 11/05/2007	

Job Number	Ordered	Client
35716	10/29/2007	PACFIC

Project ID:

PILOT CHEMICAL

Project Name:

Site:

11756 Burke St.

Santa Fe Springs, CA

Enclosed are the results of analyses on 4 samples analyzed as specified on attached chain of custody.


Amolk MOLKY Brar Laboratory Manager

^{*} Rojert G. Araghi Laboratory Director

American Scientific Laboratories, LLC (ASL) accepts sample materials from clients for analysis with the assumption that all of the information provided to ASL verbally or in writing by our clients (and/or their agents), regarding samples being submitted to ASL is complete and accurate. ASL accepts all samples subject to the following conditions:

1) ASL is not responsible for verifying any client-provided information regarding any samples submitted to the laboratory.

 ASL is not responsible for any consequences resulting from any inaccuracies, omissions, or misrepresentations contained in client-provided information regarding samples submitted to the laboratory.

AMERICAN SCIENTIFIC LABORATORIES, LLC Environmental Testing Services 2520 N. San Fernando Road, LA, CA 90065 Tel: (323) 223-9700 • Fax: (323) 223-9500

CC	OC# No	42	223 _{GLOBAL}	ID	-		E RI	EPORT:	□ PDF □	ED	F		EDD	AS	SL JO) <i>B</i> # _	3571	6	_
ı	mpany: þ	, (ic Edge Engl	ineerina				Report Tok	1								QUEST		C
Aa	Idress: 266 0		ic Edge Eige Plaza #270	Project Name	et U	QM.	I_{CQ}	Address:	1.A:	42	4								H
_/	Mission V	<u>; ;e je</u>	CA, 92691	Site Address.	SG BWA	K (St	Invoice To:		Surfertant	7	35							A
Tel Fa:	lephone: વૃંદ x: વૃદ	19' 4 19 <u> 4</u>	, CA, 92691 70 1937 70 0943	San la Project ID:	Fo Spr	195,	CA	Address:		7	À.		09+						N.
ωp	ecial Instructio mail:	n: 		Project ID:						132	50,	PH	109						
[:-]				Manager: (Mig		12	P.O.#:		1.5		F	9				-		√c
TEM	LAB USE C	INLY	SAMPLE L Sample ID	DESCRIPTION Date	Time	#	Type	Matrix	Preservation									Remarks	F
	207370)	Mw-9	10/29/07	12:14	3	VOA AMber Flastic	Hao	none	X	X	X	X						c
	20737		MW-4		12:59	3				X	X	X	X						U
	207372		MW-3		1:32	3				\times	X	\times	X						S
-	207373		MW-2	V	2:32	31	V	∀	V	X	X	X	X						T
<u></u>						-													
																			┤ ゜
<u>-</u>		10-11-1	5		ļ	-				<u> </u>				_	-				d R
 -						ļ				-									E
			1071		4 /- 3					<u> </u>									$\int \mathbf{c}$
	llected By:	5	Jan 1/Kla		•			Relinquishe	ed By:				Date	1 ~ 1	-01	Time	10.00	TAT	C
	linquished By	1: 5	roll //hlje	·	10/29/0	_		Received For Labora	- 0	_			Date ———	10/.	29/0/	/ I Ime	10:20	⊠ Normal □ Rush	R
	eceived By:			Date		I ii	me 	Condition o	т Sample:						· · · · · · · · · · · · · · · · · · ·				

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fux: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Pacific Edge Engineering, Inc. 26691 Plaza, Suite 270 Mission Viejo, CA 92691-

Telephone: (949)470-1937 Attn: Craig Stolz

Page:

2

Project ID:

PILOT CHEMICAL

Site			
11756 Burke St.		e de l	
Santa Fe Springs, CA			
	一 "祖太祖	19 ABO.,	

ASL Job Number	Submitted	Client
35716	10/29/2007	PACFIC

Method: 601/602, Halogenated and Aromatic Volatile Compounds

		QC Batch No	o: 103107-1							
Our Lab I.D.			207371	1100 1101		- 1		5 T 4 5		
Client Sample I.D.			MW-4							
Date Sampled			10/29/2007							
Date Prepared			10/31/2007							
Preparation Method										
Date Analyzed			10/31/2007							
Matrix			Water		1					
Units			ug/L							
Dilution Factor			.1							
Analytes	MDL	PQL	Results	4 4 4						
Benzene	0.064	0.500	ND							
Bromobenzene (Phenyl bromide)	0.170	0.500	ND				1			
Bromodichloromethane	0.070	0.500	ND							
(Dichlorobromomethane)										
Bromoform (Tribromomethane)	0.200	0.500	ND						i	
Bromomethane (Methyl bromide)	0.114	0.500	ND		1					
Carbon tetrachloride (Tetrachloromethane)	0.062	0.500	ND	<u> </u>						
Chlorobenzene	0.060	0.500	ND		 		i –			
Chlorodibromomethane	0.080	0.500	ND		 					
(Dibromochloromethane)		į		ļ						
Chloroethane	0.103	1.000	ND		1					
Chloroform (Trichloromethane)	0.062	0.500	0.153		1					
Chloromethane (Methyl chloride)	0.066	0.500	ND							
Dibromomethane	0.081	0.500	ND		1		1			
1,2-Dichlorobenzene (o-Dichlorobenzene)	0.114	0.500	ND							
1,3-Dichlorobenzene (m-Dichlorobenzene)	0.125	0.500	ND	İ	1					
1,4-Dichlorobenzene	0.146	0.500	ND	<u> </u>	†					
Dichlorodifluoromethane	0.070	1.000	ND		1				İ	
1,1-Dichloroethane	0.048	0.500	ND		1		i			
1,2-Dichloroethane	0.077	0.500	1.1		1					
1,1-Dichloroethene (1,1-Dichloroethylene)	0.046	0.500	ND	!						
cis-1,2-Dichloroethene	0.050	0.500	ND	<u> </u>	T -				†	
trans-1,2-Dichloroethene	0.024	0.500	ND	<u> </u>	T		i		†	
1,2-Dichloropropane	0.092	0.500	ND		†		i			
cis-1,3-Dichloropropene	0.085	0.500	ND		 		1		Ī	
trans-1,3-Dichloropropene	0.099	0.500	ND		1		\vdash			
Ethylbenzene	0.074	0.500	ND	-	 				†	
Methylene chloride (Dichloromethane,	0.333	1.000	ND	!	 		1		 	
DCM)				1			İ			

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

3

Project ID:

PILOT CHEMICAL

ASL Job Number	Submitted	Client
35716	10/29/2007	PACFIC

Method: 601/602, Halogenated and Aromatic Volatile Compounds

QC Batch No: 103107-1

		do paten it				
Our Lab LD.			207371		4,90,1415	
Client Sample I.D.			MW-4			
Date Sampled			10/29/2007			
Date Prepared			10/31/2007			
Preparation Method						
Date Analyzed			10/31/2007			
Matrix			Water			
Units		i	ug/L			
Dilution Factor			1			
Analytes	MDL	PQL	Results			
1,1,1,2-Tetrachloroethane	0.060	0.500	ND			
1,1,2,2-Tetrachloroethane	0.182	0.500	ND			
Tetrachloroethene (Tetrachloroethylene)	0.093	0.500	0.7			
Toluene (Methyl benzene)	0.092	0.500	ND			
1,1,1-Trichloroethane	0.062	0.500	ND			
1,1,2-Trichloroethane	0.105	0.500	ND			
Trichloroethene (TCE)	0.046	0.500	1.5			
Trichlorofluoromethane	0.103	0.500	ND	-		
Vinyl chloride (Chloroethene)	0.060	0.500	MD			
Xylenes, total	0.059	1.000	14.4			

Our Lab I.D.		THE WEST STATES	207371	i sat jiraa k	
Surrogates	% Rec.Limit		% Rec.		
Surrogate Percent Recovery			gjarua, ki i ki		17.7
Bromofluorobenzene	70-120		112		

QUALITY CONTROL REPORT

Analytes	MS	MS DUP	RPD	MS/MSD	MS RPD			
Analytes	% REC	% REC	%	% Limit	% Limit			
Benzene	95	101	6.1	75-120	15			
Chlorobenzene	98	105	6.9	75-120	15		İ	
1,1-Dichloroethene	95	98	3.1	75-120	15			
(1,1-Dichloroethylene)				ŀ				
Toluene (Methyl benzene)	95	101	6.1	75-120	1.5			
Trichloroethene (TCE)	106	111	4.6	75-120	15			

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Pacific Edge Engineering, Inc. 26691 Plaza, Suite 270 Mission Viejo, CA 92691-

Telephone: (949)470-1937 Craig Stolz Attn:

Page:

Project ID:

PILOT CHEMICAL

Site

11756 Burke St.		
Santa Fe Springs, CA		zézi je
		1 1:

ASL Job Number	Submitted	Client
35716	10/29/2007	PACFIC

Method: 601/602, Halogenated and Aromatic Volatile Compounds

		QC Batch N	0: 103107-1					
Our Lab I.D.			207370					·
Client Sample I.D.			MW-9					
Date Sampled			10/29/2007					
Date Prepared			10/31/2007					
Preparation Method								
Date Analyzed			10/31/2007					
Matrix			Water					
Units			ug/L					
Dilution Factor			5					
Analytes	MDL	PQL	Results			1 1 1 1 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1		
Benzene	0.320	2.500	ND					
Bromobenzene (Phenyl bromide)	0.850	2.500	ND					
Bromodichloromethane	0.350	2.500	ND					
(Dichlorobromomethane)	1	1						
Bromoform (Tribromomethane)	1.000	2.500	ND					
Bromomethane (Methyl bromide)	0.570	2.500	ND				i	_
Carbon tetrachloride (Tetrachloromethane)	0.310	2.500	ND					
Chlorobenzene	0.300	2.500	ND					
Chlorodibromomethane	0.400	2.500	ND					
(Dibromochloromethane)								
Chloroethane	0.515	5	ND					
Chloroform (Trichloromethane)	0.310	2.500	6.1					
Chloromethane (Methyl chloride)	0.330	2.500	ND	Ì	<u> </u>			
Dibromomethane	0.405	2.500	ND					
1,2-Dichlorobenzene (o-Dichlorobenzene)	0.570	2.500	ND	Ì			****	
1,3-Dichlorobenzene (m-Dichlorobenzene)	0.625	2.500	ND	İ	<u> </u>			_
1,4-Dichlorobenzene	0.730	2.500	ND		1		 	
Dichlorodifluoromethane	0.350	5	ND					
1,1-Dichloroethane	0.240	2.500	49.1		†			_
1,2-Dichloroethane	0.385	2.500	7.8					
1,1-Dichloroethene (1,1-Dichloroethylene)	0.230	2.500	3.1		 			_
cis-1,2-Dichloroethene	0.250	2.500	5.8				 	_
trans-1,2-Dichloroethene	0.120	2.500	ND	1			-	
1,2-Dichloropropane	0.460	2.500	ND		1			_
cis-1,3-Dichloropropene	0.425	2.500	ND					
trans-1,3-Dichloropropene	0.495	2.500	ND		 	-	İ	
Ethylbenzene	0.370	2.500	ND				†	
Methylene chloride (Dichloromethane,	1.665	5	ND		-			_
DCM)							1	

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

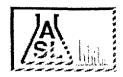
5

Project ID:

PILOT CHEMICAL

	ASL Job Number	Submitted	Client
:	35716	10/29/2007	PACFIC

Method: 601/602, Halogenated and Aromatic Volatile Compounds


QC Batch No: 103107-1

Our Lab I.D.			207370			
Client Sample I.D.			MW-9			
Date Sampled			10/29/2007			
Date Prepared			10/31/2007			
Preparation Method				i	•	
Date Analyzed	····		10/31/2007			
Matrix			Water	 		
Units			ug/L			
Dilution Factor			5			
Analytes	MDL	PQL	Results			
1,1,1,2-Tetrachloroethane	0.300	2.500	ND			
1,1,2,2-Tetrachloroethane	0.910	2.500	ND			
Tetrachloroethene (Tetrachloroethylene)	0.465	2.500	1.9J			
Toluene (Methyl benzene)	0.460	2.500	ND			
1,1,1-Trichloroethane	0.310	2.500	ND			
1,1,2-Trichloroethane	0.525	2.500	ND			
Trichloroethene (TCE)	0.230	2.500	206			
Trichlorofluoromethane	0.515	2.500	ND			
Vinyl chloride (Chloroethene)	0.300	2.500	ND			
Xylenes, total	0.295	5 .	ND			

Our Lab I.D.		207370			
Surrogates	% Rec.Limit	% Rec.		fakkajt	
Surrogate Percent Recovery					
Bromofluorobenzene	70-120	116			

QUALITY CONTROL REPORT

	MS	MS DUP	RPD	MS/MSD	MS RPD			
Analytes	% REC	% REC	%	% Limit	% Limit			
Benzene	95	101	6.1	75-120	15			
Chlorobenzene	98	105	6.9	75-120	15			
1,1-Dichloroethene	95	98	3.1	75-120	15	 		
(1,1-Dichloroethylene)								
Toluene (Methyl benzene)	95	101	6.1	75-120	15			İ
Trichloroethene (TCE)	106	111	4.6	75-120	15			

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Pacific Edge Engineering, Inc. 26691 Plaza, Suite 270 Mission Viejo, CA 92691-

Telephone: (949)470-1937 Attn: Craig Stolz

Page:

Project ID:

PILOT CHEMICAL

11756 Burke St. Santa Fe Springs, CA

ASL Job Number	Submitted	Client
35716	10/29/2007	PACFIC

Method: 601/602, Halogenated and Aromatic Volatile Compounds

<u></u>	T	1 22 22 22 2 20 2					-
Our Lab I.D.							
Client Sample I.D.			MW-3				
Date Sampled			10/29/2007				
Date Prepared		ļ	10/31/2007				
Preparation Method							
Date Analyzed			10/31/2007				ļ
Matrix			Water				
Units			ug/L				
Dilution Factor	,		250				
Analytes	MDL	PQL	Results		*		
Benzene	16	125	ND	,			
Bromobenzene (Phenyl bromide)	42	125	ND				
Bromodichloromethane	17	125	ND				
(Dichlorobromomethane)							
Bromoform (Tribromomethane)	50	125	ND .				
Bromomethane (Methyl bromide)	28	125	ND .				
Carbon tetrachloride (Tetrachloromethane)	15	125	ND				
Chlorobenzene	15	125	ND				
Chlorodibromomethane	20	125	ND				
(Dibromochloromethane)	1	1		1			
Chloroethane	25	250	ND				
Chloroform (Trichloromethane)	15	125	ND			<u> </u>	
Chloromethane (Methyl chloride)	16	125	ND				
Dibromomethane	20	125	ND				
1,2-Dichlorobenzene (o-Dichlorobenzene)	28	125	ND				
1,3-Dichlorobenzene (m-Dichlorobenzene)	31	125	ND				
1,4-Dichlorobenzene	36	125	ND				
Dichlorodifluoromethane	17	250	ND	·			
1,1-Dichloroethane	12	125	ND				
1,2-Dichloroethane	19	125	52.5J				i i
1,1-Dichloroethene (1,1-Dichloroethylene)	11	125	ND				
cis-1,2-Dichloroethene	12	125	ND	<u> </u>			<u> </u>
trans-1,2-Dichloroethene	6	125	ND	<u>. </u>		1	
1,2-Dichloropropane	23	125	ND			1	
cis-1,3-Dichloropropene	21	125	ND				
trans-1,3-Dichloropropene	24	125	ND			 	
Ethylbenzene	18	125	4250				
Methylene chloride (Dichloromethane,	83	250	ND		- 	+	
DCM)	-	1					1

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

7

Project ID:

PILOT CHEMICAL

ASL Job Number	Submitted	Client
35716	10/29/2007	PACFIC

Method: 601/602, Halogenated and Aromatic Volatile Compounds

QC Batch No: 103107-1

Our Lab I.D.			207372		Santa Francisco	
Client Sample I.D.			MW-3			
Date Sampled			10/29/2007			
Date Prepared			10/31/2007			
Preparation Method						
Date Analyzed			10/31/2007			
Matrix			Water			
Units			ug/L			
Dilution Factor			250		1	
Analytes	MDL	PQL	Results			
1,1,1,2-Tetrachloroethane	15	125	ND			
1,1,2,2-Tetrachloroethane	45	125	ND	,		
Tetrachloroethene (Tetrachloroethylene)	23	125	ND			
Toluene (Methyl benzene)	23	125	8900			
1,1,1-Trichloroethane	15	125	ND			
1,1,2-Trichloroethane	26	125	ND			
Trichloroethene (TCE)	11	125	ND	`,		
Trichlorofluoromethane	25	125	ND			
Vinyl chloride (Chloroethene)	15	125	ND			
Xylenes, total	14	250	14400			

Our Lab l.D.		207372		
Surrogates	% Rec.Limit	% Rec.		
Surrogate Percent Recovery				Taran Basa
Bromofluorobenzene	70-120	102		

QUALITY CONTROL REPORT

	MS	MS DUP	RPD	MS/MSD	MS RPD			
Analytes	% REC	% REC	%	% Limit	% Limit		İ	
Benzene	95	101	6.1	75-120	15			
Chlorobenzene	98	105	6.9	75-120	15		l .	
1,1-Dichloroethene	95	98	3.1	75-120	15			
(1,1-Dichloroethylene)								
Toluene (Methyl benzene)	95	101	6.1	75-120	15			
Trichloroethene (TCE)	106	111	4.6	75-120	15			

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Pacific Edge Engineering, Inc. 26691 Plaza, Suite 270 Mission Viejo, CA 92691-

Telephone: (949)470-1937 Attn: Craig Stolz

Page: Project ID:

8

PILOT CHEMICAL

_	4		
5	ı	tе	

11756 Burke St.	14 14 15	: :	
Santa Fe Springs, CA			
		Aleksaria Tabun 11	

ASL Job Number	Submitted	Client
35716	10/29/2007	PACFIC

Method: 601/602, Halogenated and Aromatic Volatile Compounds

1			0: 103107-1	r :		 	
Our Lab I.D.	ene ing ing		207373				10.8.3
Client Sample I.D.			MW-2				
Date Sampled			10/29/2007				
Date Prepared			10/31/2007				
Preparation Method							
Date Analyzed			10/31/2007				
Matrix			Water				
Units			ug/L				
Dilution Factor			500	ļ			
Analytes	MDL	PQL	Results	11.75			
Benzene	32	250	ND				
Bromobenzene (Phenyl bromide)	85	250	ND				
Bromodichloromethane	35	250	ND				
(Dichlorobromomethane)							
Bromoform (Tribromomethane)	100	250	ND	1			
Bromomethane (Methyl bromide)	57	250	ND				
Carbon tetrachloride (Tetrachloromethane)	31	250	ND				
Chlorobenzene	30	250	ND				
Chlorodibromomethane	40	250	ND				
(Dibromochloromethane)		1					
Chloroethane	51	500	ND		-		
Chloroform (Trichloromethane)	31	250	ND				
Chloromethane (Methyl chloride)	33	250	ND				
Dibromomethane	40	250	ND				
1,2-Dichlorobenzene (o-Dichlorobenzene)	57	250	ND				
1,3-Dichlorobenzene (m-Dichlorobenzene)	62	250	ND	i ·			
1,4-Dichlorobenzene	73	250	ND				
Dichlorodifluoromethane	35	500	ND	1			
1,1-Dichloroethane	24	250	ND	· ·			
1,2-Dichloroethane	38	250	840				
1,1-Dichloroethene (1,1-Dichloroethylene)	23	250	ND				
cis-1,2-Dichloroethene	25	250	ND		-	<u> </u>	
trans-1,2-Dichloroethene	12	250	ND	 		 _	
1,2-Dichloropropane	46	250	ND			<u> </u>	
cis-1,3-Dichloropropene	42	250	ND				1
trans-1,3-Dichloropropene	49	250	ND				
Ethylbenzene	37	250	7000				1
Methylene chloride (Dichloromethane,	166	500	ND				
DCM)		1					

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

9

Project ID:

PILOT CHEMICAL

ASL Job Number	Submitted	Client
35716	10/29/2007	PACFIC

Method: 601/602, Halogenated and Aromatic Volatile Compounds

QC Batch No: 103107-1

Our Lab I.D.	gga, Envela		207373		e in a little of	i tay aliela
Client Sample I.D.			MW-2			
Date Sampled			10/29/2007			
Date Prepared			10/31/2007			
Preparation Method						
Date Analyzed			10/31/2007			
Matrix			Water	<u> </u>		
Units			ug/L			
Dilution Factor			500			
Analytes	MDL	PQL	Results			
1,1,1,2-Tetrachloroethane	. 30	250	ND			
1,1,2,2-Tetrachloroethane	91	250	ND			
Tetrachloroethene (Tetrachloroethylene)	46	250	ND			
Toluene (Methyl benzene)	4.6	250	45000			
1,1,1-Trichloroethane	31	250	ND			
1,1,2-Trichloroethane	52	250	ND			
Trichloroethene (TCE)	23	250	ND			
Trichlorofluoromethane	51	250	ND			
Vinyl chloride (Chloroethene)	30	250	ND			
Xylenes, total	29	-500	33200			

Our Lab I.D.		207373			
Surrogates	% Rec.Limit	% Rec.			
Surrogate Percent Recovery		1.1,44			
Bromofluorobenzene	70-120	102	1		

QUALITY CONTROL REPORT

	MS	MS DUP	RPD	MS/MSD	MS RPD			
Analytes	% REC	% REC	%	% Limit	% Limit		İ	
Benzene	95	101	6.1	75-120	15			
Chlorobenzene	98	105	6.9	75-120	15			
1,1-Dichloroethene	95	98	3.1	75-120	15			
(1,1-Dichloroethylene)	i			Ì		1		
Toluene (Methyl benzene)	95	101	6.1	75-120	15			
Trichloroethene (TCE)	106	111	4.6	75-120	15			

Appendix C

SCAQMD Permit To Operate

MOMP

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 Copley Drive, Diamond Bar, CA 91765

PERMIT TO CONSTRUCT/OPERATE

Page 2 Permit No. F79822 A/N 449796

- A. THE PERMIT NUMBER OF THE EQUIPMENT.
- B. THE NAME AND PHONE NUMBER OF A CONTACT PERSON.
- C. THE PROJECT START DATE AND THE ESTIMATED PROJECT COMPLETION DATE.
- 5. UPON COMPLETION, ANY VAPOR EXTRACTION WELL (S) AND DUCT (S) SHALL BE CAPPED TO PREVENT VAPORS FROM VENTING TO THE ATMOSPHERE. VAPORS SHALL NOT BE EXTRACTED FROM THE SOIL, UNLESS VENTED TO THE VAPOR CONTROL SYSTEM.
- 6. AN IDENTIFICATION TAG OR NAME PLATE SHALL BE DISPLAYED ON THE EQUIPMENT TO SHOW MANUFACTURER MODEL NO. AND SERIAL NO. THE TAG OR NAMEPLATE SHALL BE ISSUED BY THE MANUFACTURER AND SHALL BE AFFIXED TO THE EQUIPMENT IN A PERMANENT AND CONSPICUOUS POSITION.
- A CONTINUOUS FLOW INDICATOR AND RECORDER SHALL BE MAINTAINED AT ALL INLET STREAM (S) TO CARBON ADSORBERS TO INDICATE THE TOTAL AIR FLOW RATE IN STANDARD CUBIC FEET PER MINUTE (SCFM). IN CASE A PRESSURE SENSOR DEVICE IS USED IN PLACE OF THE FLOW INDICATOR, A CONVERSION CHART SHALL BE AVAILABLE TO INDICATE THE CORRESPONDENT FLOW RATE, IN SCFM, TO THE PRESSURE READING, FLOW SHALL BE RECORDED DURING EACH MONITORING VISIT.
- THE TOTAL FLOW RATE MEASURED FOR THE CARDON ADSORBERS SHALL NOT EXCEED 250 SCFM.
- 9. THE EXTRACTION BLOWER SHALL ONLY BE OPERATED WHEN ALL EXTRACTED VAPORS ARE VENTED TO TWO CARBON ADSORBERS CONNECTED IN SERIES WITH AT LEAST A TOTAL OF 4,000 POUNDS OF ACTIVATED CARBON.
- 10. THE CARBON ADSORPTION SYSTEM SHALL EXHAUST THROUGH A STACK WITH A HEIGHT OF AT LEAST 13 FEET MEASURED FROM THE GROUND.
- 11. SAMPLES SHALL BE COLLECTED AND ANALYZED ONCE DURING THE FIRST WEEK OF OPERATION FOR VOLATILE ORGANIC COMPOUNDS AND SPECIATED FOR BENZENE, AS FOLLOWS:
 - A. SAMPLES SHALL BE COLLECTED AT THE INLET AND OUTLET OF THE CARBON ADSORPTION SYSTEM.
 - B. SAMPLING AND ANALYSIS SHALL BE CONDUCTED BY AN INDEPENDENT LABORATORY PER RULE 304.
 - C. SAMPLING SHALL CONFORM TO CARB METHOD 422 OR EQUIVALENT. SAMPLES WITH HIGH MOISTURE SHALL BE COLLECTED USING AN APPROPRIATE METHOD SUCH AS SCAQMD METHOD 25.1/25.3 OR OTHER METHODS APPROVED BY SCAQMD.
 - D. ANALYSIS SHALL BE CONDUCTED USING EPA METHOD 8015/8021 AND EPA METHOD 8260 OR OTHER METHOD APPROVED BY SCAQMO.

ORIGINAL

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 Copley Drive, Diamond Bar, CA 91765

PERMIT TO CONSTRUCT/OPERATE

Page 3 Permit No. F79822 A/N 449796

- 12. SAMPLES SHALL BE COLLECTED AND ANALYZED ONCE EACH MONTH OF OPERATION FOR VOLATILE ORGANIC COMPOUNDS AND SPECIATED FOR BENZENE AS FOLLOWS:
 - SAMPLES SHALL BE COLLECTED AT THE INLET AND OUTLET OF THE CARBON À. ADSORPTION SYSTEM.
 - SAMPLING SHALL CONFORM TO CARB METHOD 422 OR EQUIVALENT. SAMPLES WITH В. HIGH MOISTURE SHALL BE COLLECTED USING AN APPROPRIATE METHOD SUCH AS SCAOMD METHOD 25.1/25.3 OR OTHER METHODS APPROVED BY SCAOMD.
 - C. ANALYSIS SHALL BE CONDUCTED USING EPA METHOD 8015/8021 AND EPA METHOD 8260 UR OTHER METHOD APPROVED BY SCAQMD.
- TOTAL ORGANIC COMPOUNDS (TOC) CONCENTRATION SHALL BE MEASURED AT THE INLET 13. AND OUTLET OF THE PRIMARY AND SECONDARY CARBON AUSURBERS AT LEAST EVERY OPERATING DAY FOR THE FIRST 7 DAYS AND ACCORDING TO THE FOLLOWING MONITORING SCHEDULE THEREAFTER, BY USING A FLAME IONIZATION DETECTOR (FID), OR A PHOTOIONIZATION DETECTOR (PID) OR SCAQMD APPROVED ORGANIC VAPOR ANALYZER. CALIBRATED IN PARTS PER MILLION BY VOLUME (PPMV) OF HEXANE. (IF OTHER CALIBRATING AGENT WAS USED, IT SIIALL DE CORRELATED TO AND EXPRESSED AS HEXANE). THE ANALYSER SHALL MEET BPA METHOD 21 REQUIREMENTS. CALIBRATION OF THE ANALYSER SHALL BE PERFORMED PRIOR TO EACH MONITORING VISIT.

INLET TOC CONCENTRATION (PPM) MONITORING FREQUENCY

<194	•	EVERY 7 DAYS
195 - 227	•	EVERY 6 DAYS
228 - 272		EVERY 5 DAYS
273 - 340		EVERY 4 DAYS
3 4 1 - 4 <i>5</i> 3		EVERY 3 DAYS
454 - 680		EVERY 2 DAYS
681 - 1360		DAILY

- THE CONCENTRATION OF TOTAL ORGANIC COMPOUNDS (TOC) AT THE INLET OF THE CARBON 14. ADSORPTION SYSTEM SHALL NOT EXCEED 1360 PPMV, MEASURED AS HEXANE.
- CONCENTRATIONS MEASURED AT THE OUTLET OF THE SECONDARY ADSORBER SHALL NOT 15. EXCEED THE FOLLOWINGS:

COMPOUND

CONCENTRATION IN PPMV

TOC, AS HEXANE BENZENB

13.6

0.45

ORIGINAL

AOMÒ

Page 4 Permit No. F79822 A/N 449796

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 Copley Drive, Diamond Bar, CA 91765

PERMIT TO CONSTRUCT/OPERATE

- WHENEVER THE VOC CONCENTRATION AT THE OUTLET OF THE PRIMARY ADSORBER REACHES 16. 13.6 PPMV, AS HEXANE, THRN THE CARBON SHALL BE REPLACED AS FOLLOWS:
 - PRIMARY ADSORBER REPLACED WITH EITHER FRESH ADSORBENT OR ADSORBENT A. FROM THE SECONDARY ADSORBER.
 - SECONDARY ADSORBER REPLACED WITH FRESH ADSORBENT. B.
- THIS EQUIPMENT SHALL NOT BE OPERATED TO EXTRACT AND TREAT ANY CARCINOGENIC 17. COMPOUNDS LISTED IN TARILE-I, UNDER RULE 1401, AMENDED ON MARCH 4, 2005, WITH THE EXCEPTION OF BENZENE.
- 18. A TEMPERATURE GAUGE SHALL BE INSTALLED AND MAINTAINED TO INDICATE THE TEMPERATURE AT THE INLET OF THE CARBON ADSORPTION SYSTEM.
- 19. THE TEMPERATURE AT THE INLET OF THE CARBON ADSORPTION SYSTEM SHALL NOT EXCEED 140 DEGREES FAHRENHFIT.
- 20. THE ACTIVATED CARBON USED IN THE ADSORBER SHALL HAVE A CARBON TETRACHLORIDE (CTC) NO. OF NOT LESS THAN 60% AS MEASURED BY ASTM METHOD D3467.
- 21. SPENT CARBON REMOVED FROM THE SYSTEM SHALL BE STORED IN CLOSED CONTAINERS PRIOR TO REMOVAL FROM SITE.
- THE OPERATOR SHALL SUBMIT IN WRITING THE RESULTS OF THE FIRST WEEK GRAB SAMPLES' 22. ANALYSIS, INLET FLOW RATE READINGS (SCFM) AND INLET AND OUTLET VOC CONCENTRATIONS. THE RESULTS SHALL BE SUBMITTED WITHIN 45 DAYS OF START-UP, TO THE ATTENTION OF:

SCAOMD TOXICS AND WASTE MANAGEMENT TEAM 21865 COPLEY DRIVE DIAMOND BAR, CA 91765.

THE SUBMITTAL SHALL INCLUDE A COPY OF THE ACTIVE PERMIT.

23. RECORDS SHALL BE MAINTAINED AS REQUIRED TO DETERMINE COMPLIANCE WITH THE PERMIT CONDITIONS. THE RECORDS SHALL BE KEPT FOR AT LEAST TWO YEARS AND MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST.

ORIGINAL

5629454894

PILOT CHEMICAL CO

PAGE 05/05 Page 5

Permit No. F79822 AN 449796

21865 Copley Driva, Diamond Bar, CA 91765

PERMIT TO CONSTRUCT/OPERATE

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

NOTICE

IN ACCORDANCE WITH RULE 206, THIS PERMIT TO OPERATE OR COPY SHALL BE POSTED ON OR WITHIN 8 METERS OF THE EQUIPMENT.

THIS PERMIT DOES NOT AUTHORIZE THE EMISSION OF AIR CONTAMINANTS IN EXCESS OF THOSE ALLOWED BY DIVISION 26 OF THE HEALTH AND SAFETY CODE OF THE STATE OF CALIFORNIA OR THE RULES OF THE AIR QUALITY MANAGEMENT DISTRICT. THIS PERMIT CANNOT BE CONSIDERED AS PERMISSION TO VIOLATE EXISTING LAWS, ORDINANCES, REGULATIONS OR STATUTES OF OTHER GOVERNMENT AGENCIES.


EXECUTIVE OFFICER

Deris on Bailey

By Dorris M.Bailey/AM01 12/15/2005

Appendix D

Vapor Laboratory
Analytical Results and
Chain-of-Custody

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

Ordered By

Pacific Edge Engineering, Inc. 26691 Plaza, Suite 270 Mission Viejo, CA 92691

Telephone

(949) 470-1937

Attn

Greg Dickinson

Number of Pages 12

Date Received

07/26/2007

Date Reported

07/31/2007

Job Number	Ordered	Client
34666	07/26/2007	PACFIC

Project ID:

0105.0090.001.001

Project Name: Pilot Chemical Co.

Site:

11756 Burke St.

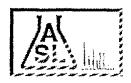
Santa Fe Springs, CA

Enclosed are the results of analyses on 4 samples analyzed as specified on attached chain of custody.

Wendy Lu Organics Supervisor

Rojert G. Araghi Laboratory Director

American Scientific Laboratories, LLC (ASL) accepts sample materials from clients for analysis with the assumption that all of the information provided to ASL verbally or in writing by our clients (and/or their agents), regarding samples being submitted to ASL is complete and accurate. ASL accepts all samples subject to the following conditions:


¹⁾ ASL is not responsible for verifying any client-provided information regarding any samples submitted to the laboratory.

²⁾ ASL is not responsible for any consequences resulting from any inaccuracies; omissions, or misrepresentations contained in client-provided information regarding samples submitted to the laboratory.

2520 N. San Fernando Road, LA, CA 90065 Tel: (323) 223-9700 • Fax: (323) 223-9500

CO	$C \# \mathbb{N}^{0}$	43	557 GLOBAL	ID			E RE	EPORT: [□ PDF □	EDi	F	$\Box E$, מכ	ASL.	JOB# ₋	3466	26
Cor	npany:	fic	Edge Fraincer	10				Report To:	M				AN	ALYS	IS RE	QUEST	ΓED
Add	dress: 2669	1 //	929 #270	Project Name;	Chemia	cal	Co.	Address:	1 <i>A</i>								
	Mission V	ljejo,	CA, 92691	Site Address:	Bucke	, <	+	Invoice To:	15 1								
Tele Fax	ephone: 940 : 946	1 47	70 1937	Santa Fe	Spring	9 1	CA	Address:		2							
Spe	gcial Instruction	in: S ERo	rtine	Project ID:	090.001.	001				13	0	0					
E-n	nail:	fix cda	gereng com	Project Manager:	Mig 51	οĺz		P.O.#:		Do	A	8					
1.	LAB USE C	NLY.	SAMPLE D	ESCRIPTION	٠ ر	, (Container(s)										
E M	Lab ID	4.275	Sample ID	Date	Time	#	Туре	Matrix	Preservation								Remarks
	200856	,	Secondary Outlet	7/25/07	13:48)	Tedlar	air	none	X	X	X					
	200857		Primary Outlet	(13:51	١				×	X	X					
	<u> 200858</u>	3	Primary Inlet		13:55	1				X	X	X					
	200859		V52	V	14:08)		1	6	X							
		- 1. - 1.					:										
Coli	lected By:	55	A Miles	Date	7/25/0	Z ^{Tii}	me as almor	Relinquishe	-				ate		Time		TAT
Rel	inquished B	V: 35	Ent Mile	Date	7/26/0	Ti	me 16:00	Received For Labora	atory (U	/X			ate 🅖	240	7 Time	4:00	Normal
Red	ceived By:			Date		Ťii	me	Condition o	f Sample:	-				/			Rush

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles. CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Pacific Edge Engineering, Inc., 26691 Plaza, Suite 270 Mission Viejo, CA 92691-

Telephone: (949)470-1937 Attn: Greg Dickinson

Page:

2

Project ID: Project Name: 0105.0090.001.001 Pilot Chemical Co.

Site

11756 Burke St.			
Santa Fe Springs, CA	: 1		
	eria November		

ASL	Job Number	Submitted	Client
	34666	07/26/2007	PACFIC

Method: 8260B, Volatile Organic Compounds

QC Batch No: 072707-1C										
Our Lab I.D.			200856	200857						
Client Sample I.D.			Secondary	Primary		1				
			Outlet	Outlet						
Date Sampled			1	07/25/2007						
Date Prepared			07/27/2007	07/27/2007						
Preparation Method										
Date Analyzed			07/27/2007	07/27/2007						
Matrix			Air	Air						
Units			uL/L	uL/L						
Dilution Factor	-		1	1						
Analytes	MDL	PQL	Results	Results						
Acetone	0.25	0.50	ND	ND]			
Benzene	0.05	0.50	ND	ND						
Bromobenzene (Phenyl bromide)	0.05	0.50	ND	ND						
Bromochloromethane	0.05	. 0.50	ND	ND						
(Chlorobromomethane)		·								
Bromodichloromethane	0.05	0.50	ND	ND						
(Dichlorobromomethane)			1		}					
Bromoform (Tribromomethane)	0.06	0.50	ND	ND			1			
Bromomethane (Methyl bromide)	0.05	0.50	ND	ND			1			
2-Butanone (MEK, Methyl ethyl ketone)	0.5	0.5	ND	ND						
n-Butylbenzene	0.07	0.50	ND	ND						
sec-Butylbenzene	0.07	0.50	ND	ND			1			
tert-Butylbenzene	0.06	0.50	ND	ND						
Carbon disulfide	0.14	0.50	ND	ND			 			
Carbon tetrachloride (Tetrachloromethane)	0.05	0.50	ND	ND						
Chlorobenzene	0.06	0.50	ND	ND			 			
Chloroethane	0.12	0.50	ND	ND						
2-Chloroethyl vinyl ether	0.14	0.50	ND	ND						
Chloroform (Trichloromethane)	0.05	0.50	ND	ND			1			
Chloromethane (Methyl chloride)	0.08	0.50	ND	ND						
4-Chlorotoluene (p-Chlorotoluene)	0.05	0.50	ND	ND	<u> </u>					
2-Chlorotoluene (o-Chlorotoluene)	0.07	0.50	ND	ND		 				
1,2-Dibromo-3-chloropropane (DBCP)	0.05	0.50	ND	ND						
Dibromochloromethane	0.05	0.50	ND	ND			1			
1,2-Dibromoethane (EDB, Ethylene	0.05	0.50	ND	ND			1			
dibromide)]					
Dibromomethane	0.05	0.50	ND	ND	 		†			
1,2-Dichlorobenzene (o-Dichlorobenzene)	0.06	0.50	ND	ND	 		 			

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

3

Project ID: Project Name:

0105.0090.001.001 Pilot Chemical Co.

ASL Job Number	Submitted	Client
34666	07/26/2007	PACFIC

Method: 8260B, Volatile Organic Compounds

Our Lab L.D.			200856	200857			
Client Sample I.D.			Secondary	Primary			
			Outlet	Outlet			
Date Sampled			07/25/2007	07/25/2007			
Date Prepared			07/27/2007	07/27/2007			
Preparation Method							
Date Analyzed			07/27/2007	07/27/2007			
Matrix			Air	Air			
Units			uL/L	uL/L			
Dilution Factor			I	1			
Analytes	MDL	PQL	Results	Results			
1,3-Dichlorobenzene (m-Dichlorobenzene)	0.06	0.50	ND	ND			
1,4-Dichlorobenzene (p-Dichlorobenzene)	0.08	0.50	ND	ND			
Dichlorodifluoromethane	0.06	0.50	ND	ND			
1,1-Dichloroethane	0.10	0.50	ND	ND			
1,2-Dichloroethane	0.05	0.50	ND	ND			
I, I-Dichloroethene (1, I-Dichloroethylene)	0.10	0.50	ND	. ND		1	
cis-1,2-Dichloroethene	0.08	0.50	ND	ND		+	
trans-1,2-Dichloroethene	0.07	0.50	ND	ND		 	-
1,2-Dichloropropane	0.08	0.50	ND	ND		 	
1,3-Dichloropropane	0.05	0.50	ND	ND		1	-
2,2-Dichloropropane	0.09	0.50	ND	ND	'	 	
1,1-Dichloropropene	0.06	0.50	ND	ND		 	
cis-1,3-Dichloropropene	0.05	0.50	ND	ND			
trans-1,3-Dichloropropene	0.05	0.50	ND	ND			
Ethylbenzene	0.06	0.50	0.19J	ND			
Hexachlorobutadiene	0.06	0.50	ND	ND		<u> </u>	
(1,3-Hexachlorobutadiene)							ļ
2-Hexanone	0.21	0.50	ND	ND		<u> </u>	
Isopropylbenzene	0.07	0.50	ND	ND		-	
p-Isopropyltoluene (4-Isopropyltoluene)	0.10	0.50	ДИ	ND		1	-
MTBE	0.08	0.50	ND	ND		 	
4-Methyl-2-pentanone (MIBK, Methyl	0.5	0.5	ND	ND		<u> </u>	
isobutyl ketone)		}					
Methylene chloride (Dichloromethane,	0.5	0.5	ND	ND			
DCM))
Naphthalene	0.09	0.50	ND	ND			
n-Propylbenzene	0.07	0.50	ND	ND		+	1
Styrene	0.05	0.50	ND	ND		 	
1,1,1,2-Tetrachloroethane	0.05	0.50	ND	ND			
1,1,2,2-Tetrachloroethane	0.10	0.50	ND	ND			-
Tetrachloroethene (Tetrachloroethylene)	0.09	0.50	ND	ND		1,	
Toluene (Methyl benzene)	0.09	0.50	0.19j	ND		1	
1,2,3-Trichlorobenzene	0.05	0.50	ND	ND		· · · · · · · · · · · · · · · · · · ·	
	ļ	<u> </u>		<u>i </u>	<u> </u>		
1,2,3-Trichlorobenzene	0.05	0.50	ND ND	ND			

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

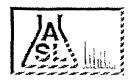
Page:

4

Project ID: Project Name: 0105.0090.001.001 Pilot Chemical Co.

ASL Job Number	Submitted	Client
34666	07/26/2007	PACFIC

Method: 8260B, Volatile Organic Compounds


QC Batch No: 072707-1C

Our Lab I.D.			200856	200857		
Client Sample I.D.			Secondary	Primary		
			Outlet	Outlet		
Date Sampled			07/25/2007	07/25/2007		
Date Prepared			07/27/2007	07/27/2007		
Preparation Method						
Date Analyzed			07/27/2007	07/27/2007		
Matrix			Air	Air		
Units			uL/L	uL/L		
Dilution Factor			1	1		
Analytes	MDL	PQĽ	Results	Results		
1,1,1-Trichloroethane	0.06	0.50	ND	ND		
1,1,2-Trichloroethane	0.07	0.50	ND	ND		
Trichloroethene (TCE)	0.05	0.50	ND	ND		
Trichlorofluoromethane	0.07	0.50	ND	ND		
1,2,3-Trichloropropane	0.07	0.50	ND	ND		
1,2,4-Trimethylbenzene	0.10	0.50	ND	ND		
1,3,5-Trimethylbenzene	0.08	0.50	ND	ND		
Vinyl acetate	0.07	0.50	ND	ŇD		
Vinyl chloride (Chloroethene)	0.12	0.50	ND	0.54		
o-Xylene	0.08	0.50	0.12J	ND		
m- & p-Xylenes	0.20	0.50	1.0	0.245		

Our Lab I.D.	1. 1. 1. 1.	200856	200857	1	+ 12 ₁ .	T			. i-		· :
Surrogates	% Rec.Limit	% Rec.	% Rec.	i., :			: 4	÷ · .			:
Surrogate Percent Recovery		4)	1 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1								_
Bromofluorobenzene	70-120	104	97								
Dibromofluoromethane	70-120	106	112			İ				•	_
Toluene-d8	70-120	100	98								

QUALITY CONTROL REPORT

	MS	MS DUP	RPD	MS/MSD	MS RPD	 	
Analytes	% REC	% REC	%	% Limit	% Limit		
Benzene	106	113	6.4	75-120	15	 <u>j</u>	
Chlorobenzene	112	116	3.5	75-120	15		
1,1-Dichloroethene	103	105	1.9	75-120	15	 	
(1,1-Dichloroethylene)		1					
MTBE	108	114	5.4	75-120	15		!
Toluene (Methyl benzene)	112	113	<1	75-120	15		
Trichloroethene (TCE)	116	117	<1	75-120	15	i	<u> </u>

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Pacific Edge Engineering, Inc. 26691 Plaza, Suite 270 Mission Viejo, CA 92691-

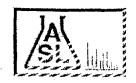
Telephone: (949)470-1937 Attn: Greg Dickinson

Page:

5

Project ID: Project Name: 0105.0090.001.001 Pilot Chemical Co.

Site


11756 Burke St. Santa Fe Springs, CA

ASL Job Number Submitted Client

34666 07/26/2007 PACFIC

Method: 8260B, Volatile Organic Compounds

QC Batch No: 072707-1C									
Our Lab I.D.			200858			e a trait			
Client Sample I.D.			Primary Inlet						
Date Sampled			07/25/2007						
Date Prepared			07/27/2007						
Preparation Method									
Date Analyzed	·-·		07/27/2007						
Matrix			Air						
Units			uL/L	1			<u> </u>		
Dilution Factor			10						
Analytes	MDL	PQL	Results				1		
Acetone	2.50	5	ND						
Benzene	0.50	5	ND						
Bromobenzene (Phenyl bromide)	0.50	5	ND						
Bromochloromethane	0.50	5	ND						
(Chlorobromomethane)									
Bromodichloromethane	0.50	5	ND						
(Dichlorobromomethane)									
Bromoform (Tribromomethane)	0.60	5	ND		`				
Bromomethane (Methyl bromide)	0.50	5	ND						
2-Butanone (MEK, Methyl ethyl ketone)	5	5	ND				1		
n-Butylbenzene	0.70	5	ND						
sec-Butylbenzene	0.70	5	ND						
tert-Butylbenzene	0.60	5	ND						
Carbon disulfide	1.40	5	ND						
Carbon tetrachloride (Tetrachloromethane)	0.50	5	ND						
Chlorobenzene	0.60	5	ND						
Chloroethane	1.20	5	ND						
2-Chloroethyl vinyl ether	1.40	5	ND						
Chloroform (Trichloromethane)	0.50	5	ND						
Chloromethane (Methyl chloride)	0.80	5	ND				i		
4-Chlorotoluene (p-Chlorotoluene)	0.50	5	ND		-				
2-Chlorotoluene (o-Chlorotoluene)	0.70	5	ND						
1,2-Dibromo-3-chloropropane (DBCP)	0.50	5	ND						
Dibromochloromethane	0.50	5	ND						
1,2-Dibromoethane (EDB, Ethylene	0.50	5	ND		-				
dibromide)									
Dibromomethane	0.50	5	ND						
1,2-Dichlorobenzene (o-Dichlorobenzene)	0.60	5	ND						
1,3-Dichlorobenzene (m-Dichlorobenzene)	0.60	5	ND						

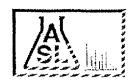
Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

6


Project ID: Project Name:

0105.0090.001.001 Pilot Chemical Co.

Ì	ASL Job Number	Submitted	Client
	34666	07/26/2007	PACFIC

. Method: 8260B, Volatile Organic Compounds

		QC Batch No	: 072707-1C			•	
Our Lab I.D.	2.5	1.5	200858				
Client Sample I.D.			Primary Inlet				
Date Sampled			07/25/2007				
Date Prepared			07/27/2007		1		
Preparation Method							
Date Analyzed			07/27/2007				
Matrix			Air				
Units			uL/L			1	
Dilution Factor			10				
Analytes	MDL	PQL	Results				
Analytes 1,4-Dichlorobenzene (p-Dichlorobenzene)	0.80	. 5	ND		1	- 	
Dichlorodifluoromethane	0.60	5	ND			 	
1,1-Dichloroethane	1.00	5	ND			 	
1,2-Dichloroethane	0.50	5	4.5J		 		
1,1-Dichloroethene (1,1-Dichloroethylene)	1.00	5	ND			 	
cis-1,2-Dichloroethene	0.80	5	ND		-	 	
trans-1,2-Dichloroethene	0.70	5	ND		 		
1,2-Dichloropropane	0.80	5	ND			 	
1,3-Dichloropropane	0.50	5	ND	<u> </u>		 	
2,2-Dichloropropane	0.90	5	ND		 	 	
1,1-Dichloropropene	0.60	5	ND				
cis-1,3-Dichloropropene	0.50	5	ND			<u> </u>	
	0.50	5	ND		 	 	
trans-1,3-Dichloropropene	0.50	5	42.0			 	
Ethylbenzene Hexachlorobutadiene	0.60	<u></u>	 		1		
	0.60	5	ND			}	
(1,3-Hexachlorobutadiene)							
2-Hexanone	2.10	5	ND		<u> </u>	 	
Isopropylbenzene	0.70	5	ND				<u></u>
p-Isopropyltoluene (4-Isopropyltoluene)	1.00	5	ND			<u> </u>	
MTBE	0.80	5	ND	· 			
4-Methyl-2-pentanone (MIBK, Methyl	5	5	ND				
isobutyl ketone)							
Methylene chloride (Dichloromethane,	5	5	ND		}		İ
DCM)							
Naphthalene	0.90	5	ND				
n-Propylbenzene	0.70	5	ND				
Styrene	0.50	5	ND				
1,1,1,2-Tetrachloroethane	0.50	5	ND				
1,1,2,2-Tetrachloroethane	1.00	5	ND ·				
Tetrachloroethene (Tetrachloroethylene)	0.90	5	ND		<u> </u>		1
Toluene (Methyl benzene)	0.90	5	73.4		1	İ	
1,2,3-Trichlorobenzene	0.50	5	ND				
1,2,4-Trichlorobenzene	0.80	5	ND				• •
1,1,1-Trichloroethane	0.60	5	ND			1	
1,1,2-Trichloroethane	0.70	5	ND	<u>' </u>	-	i	1

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

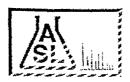
7

Project ID: Project Name: 0105.0090.001.001

Pilot Chemical Co.

ASL Job Num	ber Submitted	Client
34666	07/26/200	7 PACFIC

Method: 8260B, Volatile Organic Compounds


QC Batch No: 072707-1C

			NO: 0/2/0/-1C	 			
Our Lab I.D.			200858		s all the		
Client Sample I.D.		Primary Inlet			1		
Date Sampled			07/25/2007				
Dåte Prepared			07/27/2007				
Preparation Method							
Date Analyzed			07/27/2007				
Matrix			Air				
Units			uL/L				
Dilution Factor			10				
Analytes	MDL	PQL	Results				
Trichloroethene (TCE)	0.50	5	ND .				-
Trichlorofluoromethane	0.70	5	ND				
1,2,3-Trichloropropane	0.70	5	ND				-
1,2,4-Trimethylbenzene	1.00	5	ND				
1,3,5-Trimethylbenzene	0.80	5	ND				
Vinyl acetate	0.70	5	ND				
Vinyl chloride (Chloroethene)	1.20	5	ND				
o-Xylene	0.80	5	16.5				
m- & p-Xylenes	2.00	5	170				

Our Lab I.D.		200858	Transact.	
Surrogates	% Rec.Limit	% Rec.		
Surrogate Percent Recovery		gan Populations	14.14	
Bromofluorobenzene	70-120	112		
Dibromofluoromethane	70-120	99		
Toluene-d8	70-120	100		

QUALITY CONTROL REPORT

	MS	MS DUP	RPD	MS/MSD	MS RPD		
Analytes	% REC	% REC	%	% Limit	% Limit		
Benzene	106	113	6.4	75-120	15		
Chlorobenzene	112	116	3.5	75-120	15		
1,1-Dichloroethene	103	105	1.9	75-120	15	İ	
(1,1-Dichloroethylene)				1		j	
MTBE	108	114	5.4	75-120	15		
Toluene (Methyl benzene)	112	113	<1	75-120	15		
Trichloroethene (TCE)	116	117	<1	75-120	15		

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Pacific Edge Engineering, Inc. 26691 Plaza, Suite 270 Mission Viejo, CA 92691-

Telephone: (949)470-1937 Attn: Greg Dickinson

Page:

8

Project ID: Project Name: 0105.0090.001.001 Pilot Chemical Co.

Site

11756 Burke St. Santa Fe Springs, CA

ASL Job Number	Submitted	Client
34666	07/26/2007	PACFIC

Method: 8260B, Volatile Organic Compounds

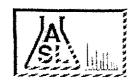
		QC Batch No	o: 072707-1C						
Our Lab I.D.			200859		Pigs.				A par
Client Sample I.D.			VS2						
Date Sampled			07/25/2007						
Date Prepared			07/27/2007						
Preparation Method									
Date Analyzed			07/27/2007						
Matrix			Air						
Units			uL/L						-
Dilution Factor			50						
Analytes	MDL	PQL	Results						
Acetone	12	25	ND .						
Benzene	2.50	25	ND						
Bromobenzene (Phenyl bromide)	2.50	25	ND						
Bromochloromethane	2.50	25	ND			•			,
(Chlorobromomethane)					<u> </u>				
Bromodichloromethane	2.50	25	ND		1		1		
(Dichlorobromomethane)							Ì		
Bromoform (Tribromomethane)	3.00	25	ND						
Bromomethane (Methyl bromide)	2.50	25	ND					İ	
2-Butanone (MEK, Methyl ethyl ketone)	25	25	ND			•			
n-Butylbenzene	3.50	25	ND						-
sec-Butylbenzene	3.50	25	ND		1		1		
tert-Butylbenzene	3.00	25	ND						
Carbon disulfide	7	25	ND					i	
Carbon tetrachloride (Tetrachloromethane)	2.50	25	· ND						
Chlorobenzene	3.00	25	ND		1			 	
Chloroethane	6	25	ND						
2-Chloroethyl vinyl ether	7	25	ND						
Chloroform (Trichloromethane)	2.50	25	ND		1				
Chloromethane (Methyl chloride)	4.00	25	MD		†				
4-Chlorotoluene (p-Chlorotoluene)	2.50	25	ND						
2-Chlorotoluene (o-Chlorotoluene)	3.50	25	ND						
1,2-Dibromo-3-chloropropane (DBCP)	2.50	25	ND					<u> </u>	-
Dibromochloromethane	2.50	25	ND	!					
1,2-Dibromoethane (EDB, Ethylene	2.50	25	ND	· · · · · · · · · · · · · · · · · · ·	T		 		
dibromide)							}		
Dibromomethane	2.50	25	ND		i			 	
1,2-Dichlorobenzene (o-Dichlorobenzene)	3.00	25	ND						
1,3-Dichlorobenzene (m-Dichlorobenzene)	3.00	25	ND		1			1	

Environmental Testing Services

2520 N. San Fornando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:


9

Project ID: Project Name: 0105.0090.001.001 Pilot Chemical Co.

ASL Job Number	Submitted	Client
34666	07/26/2007	PACFIC

Method: 8260B, Volatile Organic Compounds

		QC Batch	No: 072707-1C				
Our Lab I.D.			200859				
Client Sample I.D.			VS2				
Date Sampled			07/25/2007				
Date Prepared			07/27/2007				
Preparation Method							
Date Analyzed			07/27/2007				
Matrix			Air				
Units			uL/L				
Dilution Factor			50				
Analytes	MDL	PQL	Results				
1,4-Dichlorobenzene (p-Dichlorobenzene)	4.00	25	ND	· · · · · ·			
Dichlorodifluoromethane	3.00	25	ND		 -	<u> </u>	ĺ
1,1-Dichloroethane	5	25	ND				
1,2-Dichloroethane	2.50	25	50.4	—			
1,1-Dichloroethene (1,1-Dichloroethylene)	5	25	ND				
cis-1,2-Dichloroethene	4.00	25	ND				
trans-1,2-Dichloroethene	3.50	25	ND .		<u> </u>	-	
1,2-Dichloropropane	4.00	25	ND				-
1,3-Dichloropropane	2.50	25	ND		<u> </u>	-	+
2,2-Dichloropropane	4.50	25	ND		<u>-</u>	- 	
1,1-Dichloropropene	3.00	25	ND				· · · · · · · · · · · · · · · · · · ·
cis-1,3-Dichloropropene	2.50	25	ND	· · · - · · · · · · · · · · · · · · · ·			
	2.50	25	ND			 	
trans-1,3-Dichloropropene		25	302				
Ethylbenzene	3.00						
Hexachlorobutadiene	3.00	25	ND				
(1,3-Hexachlorobutadiene)							
2-Hexanone	10	25	ND				
Isopropylbenzene	3.50	25	24.2J				
p-Isopropyltoluene (4-Isopropyltoluene)	5	25	ND				
MTBE	4.00	25	ND				
4-Methyl-2-pentanone (MIBK, Methyl	25	25	ND			i I	
isobutyl ketone)							
Methylene chloride (Dichloromethane,	25	25	ND				
DCM)							
Naphthalene	4.50	25	ND				
n-Propylbenzene	3.50	25	ND				
Styrene	2.50	25	ND				
1,1,1,2-Tetrachloroethane	2.50	25	ND				1
1,1,2,2-Tetrachloroethane	5	25 ·	ND	<u></u>			
Tetrachloroethene (Tetrachloroethylene)	4.50	25	ND				1
Toluene (Methyl benzene)	4.50	25	584				-
1,2,3-Trichlorobenzene	2.50	25	ND				-
1,2,4-Trichlorobenzene	4.00	25	ND		i i		
1,1,1-Trichloroethane	3.00	25	ND				
1,1,2-Trichloroethane	3.50	25	ND		<u> </u>		

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

10

Project ID: Project Name: 0105.0090.001.001

Pilot Chemical Co.

ASL Job Number	Submitted	Client
34666	07/26/2007	PACFIC

Method: 8260B, Volatile Organic Compounds

QC Batch No: 072707-1C

			3. 012/01-10			
Our Lab I.D.	. Land Charge Land Charge Land Charge (1982)		200859	. 1.4 - 1.	5	
Client Sample I.D.			VS2			
Date Sampled		07/25/2007				
Date Prepared			07/27/2007			
Preparation Method						
Date Analyzed			07/27/2007			
Matrix			Air			
Units			uL/L			
Dilution Factor			50			
Analytes	MDL	PQL	Results			
Trichloroethene (TCE)	2.50	25	. ND			
Trichlorofluoromethane	3.50	25	ND			
1,2,3-Trichloropropane	3.50	25	ND			
1,2,4-Trimethylbenzene	5	25	ND			
1,3,5-Trimethylbenzene	4.00	25	ND			
Vinyl acetate	3,50	25	ND		-	
Vinyl chloride (Chloroethene)	6	25	ND			
o-Xylene	4.00	25	101			
m- & p-Xylenes	10	25	1060			

Our Lab I.D.		200859		
Surrogates	% Rec.Limit	% Rec.		
Surrogate Percent Recovery	entre de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de			
Bromofluorobenzene	70-120	110		:
Dibromofluoromethane	70-120	103		
Toluene-d8	70-120	104	, , ,	

QUALITY CONTROL REPORT

QC Batch No: 072707-1C

QO DUOT NO. 072707 TO													
HER TO THE STATE OF THE STATE O	MS	MS DUP	RPD	MS/MSD	MS RPD								
Analytes	% REC	% REC	%	% Limit	% Limit								
Benzene	106	113	6.4	75-120	15								
Chlorobenzene	112	116	3.5	75-120	15								
1,1-Dichloroethene	103	105	1.9	75-120	15								
(1,1-Dichloroethylene)													
MTBE	108	114	5.4	75-120	15								
Toluene (Methyl benzene)	112	113	<1	75-120	15								
Trichloroethene (TCE)	116	117	<1	75-120	15								

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Pacific Edge Engineering, Inc. 26691 Plaza, Suite 270 Mission Viejo, CA 92691-

Telephone: (949)470-1937 Attn: Greg Dickinson

Page:

11

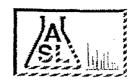
Project ID: Project Name: 0105.0090.001.001 Pilot Chemical Co. Site

11756 Burke St. Santa Fe Springs, CA

ASL Job Number	Submitted	Client
34666	07/26/2007	PACFIC

Method: 8260B, TPH GROs(Gasoline Range Organics)

QC Batch No: 072707-1C


		do Daton M	J. 0: 2: 0: -10			
Our Lab L.D.		78 2 5 48	200856	200857		
Client Sample I.D.			Secondary	Primary		
			Outlet	Outlet		
Date Sampled			07/25/2007	07/25/2007		
Date Prepared			07/27/2007	07/27/2007		
Preparation Method						
Date Analyzed			07/27/2007	07/27/2007		
Matrix			Air	Air		
Units			uL/L	uL/L		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
TPH GROs (C6 to C10)	5	10	ND	ND		

Our Lab I.D.		200856	200857		** * **.
Surrogates	% Rec,Limit	% Rec.	% Rec.	0: 1	
Surrogate Percent Recovery					
Bromofluorobenzene	70-120	104	97		
Dibromofluoromethane	70-120	106	112		
Toluene-d8	70-120	100	98		

QUALITY CONTROL REPORT

QC Batch No: 072707-1C

	MS	MS DUP	RPD	MS/MSD	MS RPD				
Analytes	% REC	% REC	%	% Limit	% Limit				
Benzene	106	113	6.4	75-120	15		į		
Chlorobenzene	112	116	3.5	75-120	15				
1,1-Dichloroethene	103	105	1.9	75-120	15				
(1,1-Dichloroethylene)									
Toluene (Methyl benzene)	112	. 113	<1	75-120	15	•			
Trichloroethene (TCE)	116	117	<1	75-120	15			1	

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Pacific Edge Engineering, Inc. 26691 Plaza, Suite 270 Mission Viejo, CA 92691-

Telephone: (949)470-1937 Attn: Greg Dickinson

Page:

12

Project ID: Project Name: 0105.0090.001.001 Pilot Chemical Co.

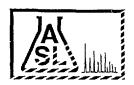
Site

11756 Burke St. Santa Fe Springs, CA

ASL Job Number Submitted Client
34666 07/26/2007 PACFIC

Method: 8260B, TPH GROs(Gasoline Range Organics)

QC Batch No: 072707-1C


	1 1 1 1 1 1	200858											
		Primary Inlet											
		07/25/2007											
		07/27/2007											
]									
		07/27/2007											
		Air											
		uL/L											
		10											
MDL	PQL	Results	· ·										
50	100	550				[
	N/IDL:	MDL PQL	Primary Inlet 07/25/2007 07/27/2007 07/27/2007 Air uL/L 10 MDL PQL Results	200858 Primary Inlet 07/25/2007 07/27/2007 07/27/2007 Air uL/L 10 MDL PQL Results	200858 Primary Inlet 07/25/2007 07/27/2007 07/27/2007 Air uL/L 10 MDL PQL Results	200858 Primary Inlet 07/25/2007 07/27/2007 07/27/2007 Air uL/L 10 MDL PQL Results							

Our Lab I.D.		200858	
Surrogates	% Rec.Limit	%Rec.	
Surrogate Percent Recovery			
Bromofluorobenzene	70-120	112	
Dibromofluoromethane	70-120	99	
Toluene-d8	70-120	100	

QUALITY CONTROL REPORT

QC Batch No: 072707-1C

	MS	MS DUP	RPD	MS/MSD	MS RPD			
Analytes	% REC	% REC	%	% Limit	% Limit			
Benzene	106	113	6.4	75-120	15		İ	
Chlorobenzene	112	116	3.5	75-120	15			
1,1-Dichloroethene	103	105	1.9	75-120	15		1	
(1,1-Dichloroethylene)								
Toluene (Methyl benzene)	112	113	<1	75-120	15			
Trichloroethene (TCE)	116	117	<1	75-120	15			

AMERICAN SCIENTIFIC LABORATORIES, LLC Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

Ordered By

Pacific Edge Engineering, Inc. 26691 Plaza, Suite 270

Mission Viejo, CA 92691-

Telephone

Attn

(949) 470-1937 Craig Stolz

Number of Pages 8 Date Received 12/12/2007 12/19/2007 Date Reported

Job Number Ordered Client 36256 12/12/2007 **PACFIC**

Project ID:

0105.0090.001.001

Project Name: Pilot Chemical Co.

Site:

11756 Burke Street

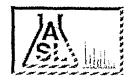
Santa Fe Springs, CA

Enclosed are the results of analyses on 3 samples analyzed as specified on attached chain of custody.

Wendy Lu Organics Supervisor

Rojert G. Araghi Laboratory Director

American Scientific Laboratories; LLC (ASL) accepts sample materials from clients for analysis with the assumption that all of the information provided to ASL verbally or in writing by our clients (and/or their agents), regarding samples being submitted to ASL, is complete and accurate. ASL accepts all samples subject to the following conditions:


¹⁾ ASL is not responsible for verifying any client-provided information regarding any samples submitted to the laboratory.

²⁾ ASL is not responsible for any consequences resulting from any maccuracies, omissions, or misrepresentations contained in client-provided information regarding samples submitted to the laboratory.

Environmental Testing Services
2520 N. San Fernando Road, LA, CA 90065 Tel: (323) 223-9700 • Fax: (323) 223-9500

C	OC# № 2	44.	893 _{GLOBAL} i	ID			E RE	PORT:	\square PDF \square	ED	F ($\exists EL$	DD A	ISL JO)B# _	3629	56	-
Co	ompany: acif	cic E	Joe Engineering	1				Report To:	4					LYSIS				C
Ac	ddress: 2.66	71 P	893 GLOBAL Bodge Engineering Plaza #270 Ch. 92691	Project Name:	Chem	ica	160.	Address:	A									H
				Site Address:	Bucke S	st.		Invoice To:				ļ						A
Te Fa	lephone: 9L) x: 9U	9 4	70 1937	Soute Fo	Spring	35.	CA	Address:		2								N
Sp	pecial Instruction	n: PDartis	ng ·	Project ID:	1090. 001	-0	01			Cy.	15	7						
E-	mail:	Fice	dge-eng.com	Project Manager:	Mig	5%	lz	P.O.#:		1	B	3						o
I T	LAB USE O	NLY	SAMPLE D	ESCRIPTION	<i></i>	C	Container(s)		Du tio									F
E M	Lab ID		Sample ID	Date	Time	#	Туре	Matrix	Preservation								Remarks	
	210278	-	Secondary Outlet	12/11/07	11:08	1.	tedlar	air	pone	X	X	X						C
	210279	,	Primary Outlet	(11:10	1		<	5	X	X	X						ับ
	210280		Primary Outlet	2	11:14	1		6	V	X								S
																		T
																		0
							;											D
																		Y
																		1_
										<u> </u>								R
																		E
Сс	llected By:		An 111.1.	Date	12/11/0-	」 フTin	ne as chow	Relinguish	ed By:	<u> </u>		D	ate		Time	<u> </u>	TAT	C
	elinquished By		W ((W)	Date	10/11/0/	Tir		Received For Labor	catory Alemf	1/250	uin	D	ate /z/,	12/07	Time	221	Normal	R
Re	eceived By:		an ye likeli	Date		Tir.	 ne	Condition		1027	NA EFS			/			□Rush	D

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

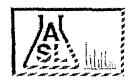
Pacific Edge Engineering, Inc. 26691 Plaza, Suite 270 Mission Viejo, CA 92691

Telephone: (949)470-1937 Attn: Craig Stolz

Page:

2

Project ID: Project Name: 0105.0090.001.001 Pilot Chemical Co.


Site

11756 Burke Street	7.7	1		
Santa Fe Springs, CA			:	
	44.1 8.163.			

ASL Job Number Submitted Client
36256 12/12/2007 PACFIC

Method: 8260B, Volatile Organic Compounds

Client Sample I.D.			QC Batch No			, 			
Client Sample I.D.	Our Lab I.D.						· <u></u>	<u> </u>	
Date Sampled 12/11/2007 12/11/2007	Client Sample I.D.			Secondary	Primary				
Date Preparation Method									l
Preparation Method 12/13/2007 Matrix Air Air Air Air Units Units UL/L U	Date Sampled			12/11/2007	12/11/2007				
Date Analyzed 12/13/2007 12/13/2007 Matrix Air Air Air M	Date Prepared			12/13/2007	12/13/2007				
Matrix									
Units				12/13/2007	12/13/2007				
Dilution Factor	<u> </u>			Air	·				
Analytes	<u> </u>			uL/L	uL/L				
Acetone	Dilution Factor			1	1				
Benzene 0.05 0.50 ND ND ND	Analytes	MDL	PQL	Results	Results				
Bromobenzene (Phenyl bromide)	Acetone	0.25	0.50	ND	ND				
Bromochloromethane 0.05 0.50 ND ND ND	Benzene	0.05	0.50	ND	ND				
Chlorobromomethane	Bromobenzene (Phenyl bromide)	0.05	0.50	ND	ND				
Bromodichloromethane	Bromochloromethane	0.05	0.50	ND	ND				
(Dichlorobromomethane) Chlorobromomethane) Chlorobromomethane Ch	(Chlorobromomethane)								
Bromoform (Tribromomethane)	Bromodichloromethane	0.05	0.50	ND	ND				
Bromomethane (Methyl bromide)	(Dichlorobromomethane)								
2-Butanone (MEK, Methyl ethyl ketone) 0.5 0.5 ND ND ND	Bromoform (Tribromomethane)	0.06	0.50	ND	ND				
Description	Bromomethane (Methyl bromide)	0.05	0.50	ND	ND			 	
Sec-Butylbenzene	2-Butanone (MEK, Methyl ethyl ketone)	0,5	0.5	ND	ND				
Carbon disulfide	n-Butylbenzene	0.07	0.50	ND	ND				
Carbon disulfide 0.14 0.50 ND ND Carbon tetrachloride (Tetrachloromethane) 0.05 0.50 ND ND Chloroethane 0.06 0.50 ND ND Chloroethane 0.12 0.50 ND ND 2-Chloroethyl vinyl ether 0.14 0.50 ND ND Chloroform (Trichloromethane) 0.05 0.50 ND ND Chloroform (Methyl chloride) 0.08 0.50 ND ND 4-Chlorotoluene (p-Chlorotoluene) 0.05 0.50 ND ND 2-Chlorotoluene (o-Chlorotoluene) 0.07 0.50 ND ND 1,2-Dibromo-3-chloropropane (DBCP) 0.05 0.50 ND ND Dibromoethlane 0.05 0.50 ND ND dibromide) 0.05 0.50 ND ND	sec-Butylbenzene	0.07	0.50	ND	ND				
Carbon tetrachloride (Tetrachloromethane) 0.05 0.50 ND ND Chlorobenzene 0.06 0.50 ND ND Chloroethane 0.12 0.50 ND ND 2-Chloroethyl vinyl ether 0.14 0.50 ND ND Chloroform (Trichloromethane) 0.05 0.50 ND ND Chloromethane (Methyl chloride) 0.08 0.50 ND ND 4-Chlorotoluene (p-Chlorotoluene) 0.05 0.50 ND ND 2-Chlorotoluene (o-Chlorotoluene) 0.07 0.50 ND ND 1,2-Dibromo-3-chloropropane (DBCP) 0.05 0.50 ND ND Dibromoethlane (EDB, Ethylene 0.05 0.50 ND ND dibromide) 0.05 0.50 ND ND	tert-Butylbenzene	0.06	0.50	ND	ND	Ì			
Chlorobenzene 0.06 0.50 ND ND Chloroethane 0.12 0.50 ND ND 2-Chloroethyl vinyl ether 0.14 0.50 ND ND Chloroform (Trichloromethane) 0.05 0.50 ND ND Chloromethane (Methyl chloride) 0.08 0.50 ND ND 4-Chlorotoluene (p-Chlorotoluene) 0.05 0.50 ND ND 2-Chlorotoluene (o-Chlorotoluene) 0.07 0.50 ND ND 1,2-Dibromo-3-chloropropane (DBCP) 0.05 0.50 ND ND Dibromoethane (EDB, Ethylene 0.05 0.50 ND ND dibromide) 0.05 0.50 ND ND	Carbon disulfide	0.14	0.50	ND	ND				
Chloroethane 0.12 0.50 ND ND 2-Chloroethyl vinyl ether 0.14 0.50 ND ND Chloroform (Trichloromethane) 0.05 0.50 ND ND Chloromethane (Methyl chloride) 0.08 0.50 ND ND 4-Chlorotoluene (p-Chlorotoluene) 0.05 0.50 ND ND 2-Chlorotoluene (o-Chlorotoluene) 0.07 0.50 ND ND 1,2-Dibromo-3-chloropropane (DBCP) 0.05 0.50 ND ND Dibromochloromethane 0.05 0.50 ND ND 1,2-Dibromoethane (EDB, Ethylene 0.05 0.50 ND ND dibromide) 0.05 0.50 ND ND	Carbon tetrachloride (Tetrachloromethane)	0.05	0.50	ND	ND	i	T		
2-Chloroethyl vinyl ether 0.14 0.50 ND ND Chloroform (Trichloromethane) 0.05 0.50 ND ND Chloromethane (Methyl chloride) 0.08 0.50 ND ND 4-Chlorotoluene (p-Chlorotoluene) 0.05 0.50 ND ND 2-Chlorotoluene (o-Chlorotoluene) 0.07 0.50 ND ND 1,2-Dibromo-3-chloropropane (DBCP) 0.05 0.50 ND ND Dibromochloromethane 0.05 0.50 ND ND 1,2-Dibromoethane (EDB, Ethylene 0.05 0.50 ND ND dibromide) 0.05 0.50 ND ND	Chlorobenzene	0.06	0.50	ND	ND	 			
Chloroform (Trichloromethane) 0.05 0.50 ND ND Chloromethane (Methyl chloride) 0.08 0.50 ND ND 4-Chlorotoluene (p-Chlorotoluene) 0.05 0.50 ND ND 2-Chlorotoluene (o-Chlorotoluene) 0.07 0.50 ND ND 1,2-Dibromo-3-chloropropane (DBCP) 0.05 0.50 ND ND Dibromochloromethane 0.05 0.50 ND ND 1,2-Dibromoethane (EDB, Ethylene 0.05 0.50 ND ND dibromide) 0.05 0.50 ND ND	Chloroethane	0.12	0.50	ND	ND	 			
Chloromethane (Methyl chloride) 0.08 0.50 ND ND 4-Chlorotoluene (p-Chlorotoluene) 0.05 0.50 ND ND 2-Chlorotoluene (o-Chlorotoluene) 0.07 0.50 ND ND 1,2-Dibromo-3-chloropropane (DBCP) 0.05 0.50 ND ND Dibromochloromethane 0.05 0.50 ND ND 1,2-Dibromoethane (EDB, Ethylene 0.05 0.50 ND ND dibromide) ND ND ND	2-Chloroethyl vinyl ether	0.14	0.50	ND	ND				
4-Chlorotoluene (p-Chlorotoluene) 0.05 0.50 ND ND ND 2-Chlorotoluene (o-Chlorotoluene) 0.07 0.50 ND ND ND 1,2-Dibromo-3-chloropropane (DBCP) 0.05 0.50 ND ND ND Dibromochloromethane 0.05 0.50 ND ND ND ND 1,2-Dibromoethane (EDB, Ethylene 0.05 0.50 ND ND ND ND Dibromomethane 0.05 0.50 ND ND ND ND Dibromomethane 0.05 0.50 ND ND ND ND ND ND ND ND ND ND ND ND ND	Chloroform (Trichloromethane)	0.05	0.50	ND	ND				
4-Chlorotoluene (p-Chlorotoluene) 0.05 0.50 ND ND ND 2-Chlorotoluene (o-Chlorotoluene) 0.07 0.50 ND ND ND 1,2-Dibromo-3-chloropropane (DBCP) 0.05 0.50 ND ND ND Dibromochloromethane 0.05 0.50 ND ND ND ND 1,2-Dibromoethane (EDB, Ethylene 0.05 0.50 ND ND ND ND Dibromomethane 0.05 0.50 ND ND ND ND Dibromomethane 0.05 0.50 ND ND ND ND ND ND ND ND ND ND ND ND ND	Chloromethane (Methyl chloride)	0.08	0.50	ND	ND	!	-		
1,2-Dibromo-3-chloropropane (DBCP) 0.05 0.50 ND ND Dibromochloromethane 0.05 0.50 ND ND 1,2-Dibromoethane (EDB, Ethylene 0.05 0.50 ND ND dibromide) 0.05 0.50 ND ND	4-Chlorotoluene (p-Chlorotoluene)	0.05	0.50	ND	! ND				
1,2-Dibromo-3-chloropropane (DBCP) 0.05 0.50 ND ND Dibromochloromethane 0.05 0.50 ND ND 1,2-Dibromoethane (EDB, Ethylene 0.05 0.50 ND ND dibromide) 0.05 0.50 ND ND	2-Chlorotoluene (o-Chlorotoluene)	0.07	0.50	ND	ND			·	1
Dibromochloromethane 0.05 0.50 ND ND ND 1,2-Dibromoethane (EDB, Ethylene dibromide) 0.05 0.50 ND ND ND Dibromomethane 0.05 0.50 ND ND ND	1,2-Dibromo-3-chloropropane (DBCP)	0.05	0.50	ND	ND		_		
dibromide) Dibromomethane 0.05 0.50 ND ND	Dibromochloromethane	0.05	0.50	ND	ND	1			<u> </u>
dibromide) Dibromomethane 0.05 0.50 ND ND	1,2-Dibromoethane (EDB, Ethylene	0.05	0.50	ND	ND				
Dibromomethane 0.05 0.50 ND ND	dibromide)						ĺ		
1,2-Dichlorobenzene (o-Dichlorobenzene) 0.06 0.50 ND ND	Dibromomethane	0.05	0.50	ND	ND		+		j
	1,2-Dichlorobenzene (o-Dichlorobenzene)	0.06	0.50	ND	ND	†			

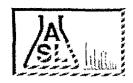
Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

3


Project ID: Project Name: 0105.0090.001.001

Pilot Chemical Co.

[ASL Job Number	Submitted	Client
	36256	12/12/2007	PACFIC

Method: 8260B, Volatile Organic Compounds

		QC Batch No	: 121307-2B				
Our Lab I.D.			210278	210279		1	
Client Sample I.D.			Secondary	Primary			
			Outlet	Outlet			
Date Sampled				12/11/2007			
Date Prepared			12/13/2007	12/13/2007			
Preparation Method							
Date Analyzed			12/13/2007	12/13/2007	<u> </u>		
Matrix		J	Air	Air			
Units			uL/L	uL/L			
Dilution Factor			1	1			
Analytes	MDL.	PQL	Results	Results			
1,3-Dichlorobenzene (m-Dichlorobenzene)	0.06	0.50	ND	ND	1		
1,4-Dichlorobenzene (p-Dichlorobenzene)	0.08	0.50	ND	ND			
Dichlorodifluoromethane	0.06	0.50	ND	ND			
1,1-Dichloroethane	0.10	0.50	ND	ND	1		
1,2-Dichloroethane	0.05	0.50	ND	ND		<u> </u>	
1,1-Dichloroethene (1,1-Dichloroethylene)	0.10	0.50	ND .	ND			
cis-1,2-Dichloroethene	0.08	0.50	ND	ND	İ		
trans-1,2-Dichloroethene	0.07	0.50	ND	ND			
1,2-Dichloropropane	0.08	0.50	ND	ND		1	
1,3-Dichloropropane	0.05	0.50	ND	ND	· · · · · · · · · · · · · · · · · · ·		
2,2-Dichloropropane	0.09	0.50	ND	ND		1	
1,1-Dichloropropene	0.06	0.50	ND	ND			
cis-1,3-Dichloropropene	0.05	0.50	ND	ND			
trans-1,3-Dichloropropene	0.05	0.50	ND	ND		-	
Ethylbenzene	0.06	0.50	ND	ND .	†	-	
Hexachlorobutadiene	0.06	0.50	ND	ND		 	
(1,3-Hexachlorobutadiene)	****						1
2-Hexanone	0.21	0.50	ND	ND	 	 	
Isopropylbenzene	0.07	0.50	ND	ND			
p-Isopropyltoluene (4-Isopropyltoluene)	0.10	0.50	ND	ND	 		
MTBE	0.08	0.50	ND	ND	 		
4-Methyl-2-pentanone (MIBK, Methyl	0.5	0.5	ND	ND	 		
isobutyl ketone)	0.5	0.5	, RD	, AD			
Methylene chloride (Dichloromethane,	0.5	0.5	ND	ND	ļ	 	
DCM)	0.5	0.5	ND.	, ND	}	ļ	l I
Naphthalene	0.09	0.50	ND	ND	 	 	
n-Propylbenzene	0.07	0.50	ND	ND	 	 	:
Styrene	0.05		1	 	 		
I,I,1,2-Tetrachloroethane	0.05	0.50	ND ND	ND		 	
1,1,2,2-Tetrachloroethane			 	 	1		:
	0.10	0.50	ND	ND	ļ -	 	
Tetrachloroethene (Tetrachloroethylene)	0.09	0.50	ND	ND	<u> </u>	1	<u>!</u>
Toluene (Methyl benzene)	0.09	0.50	ND	ND	 	!	
1,2,3-Trichlorobenzene	0.05	0.50	ND	ND	<u> </u>	+	<u> </u>
1,2,4-Trichlorobenzene	0.08	0.50	ND	ND	ļ	J	!

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

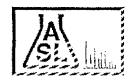
4

Project ID: Project Name:

0105.0090.001.001 Pilot Chemical Co.

ASL Job Number	Submitted	Client
36256	12/12/2007	PACFIC

Method: 8260B, Volatile Organic Compounds


QC Batch No: 121307-2B

		QC Batch NC	. IZ1001 ZD			
Our Lab I.D.			210278	210279		
Client Sample I.D.			Secondary	Primary		
			Outlet	Outlet		
Date Sampled			12/11/2007	12/11/2007		
Date Prepared			12/13/2007	12/13/2007		
Preparation Method						<u></u>
Date Analyzed				12/13/2007		
Matrix			Air	Air		
Units			uL/L	uL/L	}	
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
1,1,1-Trichloroethane	0.06	0.50	ND	ND		
1,1,2-Trichloroethane	0.07	0.50	ND	ND		
Trichloroethene (TCE)	0.05	0.50	ND	ND		
Trichlorofluoromethane	0.07	0.50	ND	ND		
1,2,3-Trichloropropane	0.07	0.50	ND .	ND		
1,2,4-Trimethylbenzene	0.10	0.50	ND	, ND		
1,3,5-Trimethylbenzene	0.08	0.50	ND	ND		
Vinyl acetate	0.07	0.50	ND	ИD		
Vinyl chloride (Chloroethene)	0.12	0.50	ND	ND		
o-Xylene	0.08	0.50	ND	ND		
m- & p-Xylenes	0.20	0.50	ND	ND		

Our Lab I.D.		210278	210279			
Surrogates	% Rec.Limit	% Rec.	% Rec.			
Surrogate Percent Recovery				ASSESSED A		
Bromofluorobenzene	70-120	118	119			
Dibromofluoromethane	70-120	104	101			
Toluene-d8	70-120	86	84		}	

QUALITY CONTROL REPORT

MS	MS DUP	RPD	MS/MSD	MS RPD					
% REC	% REC	%	% Limit	% Limit					
102	115	12.0	75-120	15					
97	104	7.0	75-120	15					<u> </u>
92	101	9.3	75-120	15					
98	108	9.7	75-120	15					
108	118	8.8	75-120	15	i				
92	102	10.3	75-120	15		-			1
	% REC 102 97 92 98 108	% REC % REC	% REC % REC % 102 115 12.0 97 104 7.0 92 101 9.3 98 108 9.7 108 118 8.8	% REC % REC % Limit 102 115 12.0 75-120 97 104 7.0 75-120 92 101 9.3 75-120 98 108 9.7 75-120 108 118 8.8 75-120	% REC % REC % Limit % Limit 102 115 12.0 75-120 15 97 104 7.0 75-120 15 92 101 9.3 75-120 15 98 108 9.7 75-120 15 108 118 8.8 75-120 15	% REC % REC % Limit % Limit 102 115 12.0 75-120 15 97 104 7.0 75-120 15 92 101 9.3 75-120 15 98 108 9.7 75-120 15 108 118 8.8 75-120 15	% REC % REC % Limit % Limit 102 115 12.0 75-120 15 97 104 7.0 75-120 15 92 101 9.3 75-120 15 98 108 9.7 75-120 15 108 118 8.8 75-120 15	% REC % REC % Limit % Limit 102 115 12.0 75-120 15 97 104 7.0 75-120 15 92 101 9.3 75-120 15 98 108 9.7 75-120 15 108 118 8.8 75-120 15	% REC % REC % Limit % Limit 102 115 12.0 75-120 15 97 104 7.0 75-120 15 92 101 9.3 75-120 15 98 108 9.7 75-120 15 108 118 8.8 75-120 15

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

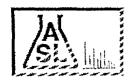
Pacific Edge Engineering, Inc. 26691 Plaza, Suite 270 Mission Viejo, CA 92691-

Telephone: (949)470-1937 Attn: Craig Stolz

Page:

5

Project ID: Project Name: 0105.0090.001.001 Pilot Chemical Co.


Site

11756 Burke Street Santa Fe Springs, CA

ASL Job Number	Submitted	Client
36256	12/12/2007	PACFIC

Method: 8260B, Volatile Organic Compounds

			o: 121307-2B				
Our Lab I.D.			210280	Series 1	7-1	######################################	
Client Sample I.D.			VS2				
Date Sampled			12/11/2007				
Date Prepared			12/13/2007				
Preparation Method					1 1		
Date Analyzed			12/13/2007				
Matrix			Air		1		
Units	-		uL/L				
Dilution Factor	·····		50		1		
Analytes	MDL	PQL	Results				
Acetone	12	25	ND				
Benzene	2.50	25	ND				
Bromobenzene (Phenyl bromide)	2.50	25	ND				
Bromochloromethane	2.50	25	ND				
(Chlorobromomethane)						,	
Bromodichloromethane	2.50	25	ND				
(Dichlorobromomethane)							
Bromoform (Tribromomethane)	3.00	25	ND				
Bromomethane (Methyl bromide)	2.50	25	ND				
2-Butanone (MEK, Methyl ethyl ketone)	25	25	ND				
n-Butylbenzene	3.50	25	ND		-		
sec-Butylbenzene	3.50	25	ND	ļ			
tert-Butylbenzene	3.00	25	ND				
Carbon disulfide	7	25	ND				
Carbon tetrachloride (Tetrachloromethane)	2.50	25	ND	~			
Chlorobenzene	3.00	25	ND				-
Chloroethane	6	25	ND		i	- 	
2-Chloroethyl vinyl ether	7	25	ND		-		
Chloroform (Trichloromethane)	2.50	25	ND				
Chloromethane (Methyl chloride)	4.00	25	ND		<u>i</u>		
4-Chlorotoluene (p-Chlorotoluene)	2.50	25	ND	 		i	
2-Chlorotoluene (o-Chlorotoluene)	3.50	25	ND				
1,2-Dibromo-3-chloropropane (DBCP)	2.50	25	ND	1	 		
Dibromochloromethane	2.50	25	ND	<u> </u>	:		
1,2-Dibromoethane (EDB, Ethylene	2,50	25	ND	Ī.			
dibromide)				İ			
Dibromomethane	2.50	25	ND	1			
1,2-Dichlorobenzene (o-Dichlorobenzene)	3.00	25	ND	1			
1,3-Dichlorobenzene (m-Dichlorobenzene)	3.00	25	ND	1			

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

6

Project ID: Project Name: 0105.0090.001.001 Pilot Chemical Co.

ASL Job Number	Submitted	Client
36256	12/12/2007	PACFIC

Method: 8260B, Volatile Organic Compounds

		QC Batch No		ter to a terminal of	<u>। इस्तर्भ रोगा वर्षा १००० १००</u> ०	y na an Talana.	1 30.00
Our Lab I.D.	<u>di 1996 barki</u>		Tally an an account of the con-				
Client Sample I.D.			VS2		<u> </u>		<u> </u>
Date Sampled			12/11/2007			-	-
Date Prepared			12/13/2007				
Preparation Method			12/13/2007				ļ
Date Analyzed			ļ	<u> </u>		<u> </u>	ļ
Matrix			Air			ļ <u>-</u> -	
Units			uL/L				
Dilution Factor	resident er en en land.		50				ļ
Analytes	MDL	PQL	Results			i day	
1,4-Dichlorobenzene (p-Dichlorobenzene)	4.00	25	ND		<u> </u>		
Dichlorodifluoromethane	3.00	25	ND				
1,1-Dichloroethane	5	25	ND			<u> </u>	
1,2-Dichloroethane	2.50	25	66.3	l			
1,1-Dichloroethene (1,1-Dichloroethylene)	5	25	ND				
cis-1,2-Dichloroethene	4.00	25	ND				
trans-1,2-Dichloroethene	3.50	25	ND				
1,2-Dichloropropane	4.00	25	ND	1			
1,3-Dichloropropane	2.50	25	ND				
2,2-Dichloropropane	4.50	25	ND				
1,1-Dichloropropene	3.00	25	ND		· ·		
cis-1,3-Dichloropropene	2.50	25	ND			1	
trans-1,3-Dichloropropene	2.50	25	ND				-
Ethylbenzene	3.00	25	314				
Hexachlorobutadiene	3.00	25	ND	 			
(1,3-Hexachlorobutadiene)				-			
2-Hexanone	10	25	ND		 		
Isopropylbenzene	3.50	25	31.8	<u> </u>		 	
p-Isopropyltoluene (4-Isopropyltoluene)	5	25	ND		 	<u> </u>	
MTBE	4.00	25	ND				
4-Methyl-2-pentanone (MIBK, Methyl	25	25	ND	1			
isobutyl ketone)							
Methylene chloride (Dichloromethane,	25	25	ND		 	 	
DCM)		1					
Naphthalene	4.50	25	ND	 	 		
n-Propylbenzene	3.50	25	ND				1
Styrene	2.50	25	ND	 	 	1	
1,1,1,2-Tetrachloroethane	2.50	25	ND			-	
1,1,2,2-Tetrachloroethane	5	25	ND		 	-	
Tetrachloroethene (Tetrachloroethylene)	4.50	25	ND	:	†	!	
Toluene (Methyl benzene)	4.50	25	639	1	 		<u> </u>
1,2,3-Trichlorobenzene	2.50	25	ND	<u> </u>	<u>;</u>	<u>:</u>	
1,2,4-Trichlorobenzene	4.00	25	ND	1	1	1	
1,1,1-Trichloroethane	3.00	25	ND		<u>i</u>		1
1,1,2-Trichloroethane	3.50	25	ND	-	1	- 	
- 7- 7- A MONITO OCHICANE	3.30	1	1	<u>L</u>	!		!

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

7

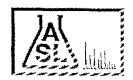
Project ID: Project Name:

0105.0090.001.001

Pilot Chemical Co.

ASL Job Number	Submitted	Client
36256	12/12/2007	PACFIC

Method: 8260B, Volatile Organic Compounds


QC Batch No: 121307-2B

			J. 121301-2D			
Our Lab I.D.			210280		Manga jarah di	
Client Sample I.D.			VS2			
Date Sampled			12/11/2007			
Date Prepared			12/13/2007			
Preparation Method						
Date Analyzed			12/13/2007			
Matrix			Air			
Units			uL/L			
Dilution Factor			50			
Analytes	MDL	PQL	Results	1.44.11.		
Trichloroethene (TCE)	2.50	25	ND			
Trichlorofluoromethane	3.50	25	ND			
1,2,3-Trichloropropane	3.50	25	ND			
1,2,4-Trimethylbenzene	5	25	ND			
1,3,5-Trimethylbenzene	4.00	25	ND			
Vinyl acetate	3.50	25	ND			
Vinyl chloride (Chloroethene)	6	25	ND			
o-Xylene	4.00	25	146			
m- & p-Xylenes	10	25	1590			

Our Lab I.D.		210280			
Surrogates	% Rec.Limit	% Rec.			
Surrogate Percent Recovery					
Bromofluorobenzene	70-120	117	1		
Dibromofluoromethane	70-120	88			
Toluene-d8	70-120	88			

QUALITY CONTROL REPORT

	MS	MS DUP	RPD	MS/MSD	MS RPD			
Analytes	% REC	% REC	%	% Limit	% Limit			
Benzene	102	115	12.0	75-120	15			
Chlorobenzene	97	104	7.0	75-120	15			
1,1-Dichloroethene	92	101	9.3	75-120	15			
(1,1-Dichloroethylene)							-	
MTBE	98	108	9.7	75-120	15			
Toluene (Methyl benzene)	108	118	8.8	75-120	15		-	
Trichloroethene (TCE)	92	102	10.3	75-120	15	·	İ	İ

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fux: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Pacific Edge Engineering, Inc. 26691 Plaza, Suite 270 Mission Viejo, CA 92691-

Telephone: (949)470-1937 Attn: Craig Stolz

Page:

8

Project ID: Project Name: 0105.0090.001.001 Pilot Chemical Co.

Site

11756 Burke Street Santa Fe Springs, CA

ASL Job Number	Submitted	Client
36256	12/12/2007	PACFIC

Method: 8260B, TPH GROs(Gasoline Range Organics)

QC Batch No: 121307-2B

Our Lab I.D.		210278	210279		raika mata
Client Sample I.D.		Secondary	Primary		
		Outlet	Outlet	•	
Date Sampled		12/11/2007	12/11/2007		
Date Prepared		12/13/2007	12/13/2007		
Preparation Method					
Date Analyzed		12/13/2007	12/13/2007		
Matrix		Air	Air		
Units		uL/L	uL/L		
Dilution Factor		1	1		
Analytes MDL	PQL	Results	Results		1111
TPH GROs (C6 to C10) 5	10	ND	ND		

Our Lab I.D.		210278	210279	1.44 . 7	Gay (Alle
Surrogates	% Rec,Limit	% Rec.	% Rec.		
Surrogate Percent Recovery					
Bromofluorobenzene	70-120	118	119		
Dibromofluoromethane	70-120	104	101		
Toluene-d8	70-120	86	84		

QUALITY CONTROL REPORT

	MS	MS DUP	RPD	MS/MSD	MS RPD		
Analytes	% REC	% REC	%	% Limit	% Limit		
Benzene	102	115	12.0	75-120	15		
Chlorobenzene	97	104	7.0	75-120	15		
1,1-Dichloroethene	92	101	9.3	75-120	15		[
(1,1-Dichloroethylene)							
Toluene (Methyl benzene)	108	118	8.8	75~120	15	-	
Trichloroethene (TCE)	92	102	10.3	75-120	15		

Appendix E

SVE Operational Field Logs

All and the second	Service Co	er en en	Control of the Control of Control	TE INFORMAT	10 N , which is the monthly assumed to the state of th	
Client/Site:	Pilot Chemic					\neg
Address:	11756 Burke		Fe Springs		Unit: 250 Scfm Carbon]
Project No:	0105.0090.00	,			Permit No.: <i>F79822</i>	
ffechinoum.	Initials: =7		1/1		Date: 7/10/07	
Artival Status	ON 7	OFF	Alarms:	S THE DISCUSSION OF SECURITION	ND RATE OF THE SECOND S	0.000
	D-i Co	ator Inlat (ne	m): 392,4	IN THE FERGINFO	RMATION	
PID/Reading 5	Primary Can				Secondary Canister Inlet (ppm): O · O	
Dilimon Valve	Manual (% o		pm). O .O		Secondary Canister Outlet (ppm): O .0	
Operating Hours	Total Hours:	peny.	adi	74.9	Cummulative Hours:	
19 JUNE 1982241 ENGLISHED, PROGRESS CONTRACTOR E. CENTRALISMAN COM	7					\dashv
Knockont Pot	Total Gallon		Cummulative Gall		Drained: Y N	
Extraction System	Influent Flov		<u>~ 236</u>		Lubricated: Y / 🕥	
Extraction System ***	Influent Vac		.4" -> 17	7.5"	Temp @ carbon Influent 23	
Extraction System :	Vacuum @ l	nockoff pot		2.5"	Temp @ heat exchanger influent 35	j
Extraction System : *	Pressure @ o	outlet of heat	exchanger	h/a	Pressure @ inlet to heat exchanger O	
				PROCESSIDAT	$\Gamma \Delta$	
				11 11 11 11 11 11 11 11 11 11 11 11 11		
SAWILLE NO. 22	жен Орел	I low Rate	Vacuum at Wel	Lifead: PID Rea		
	L Open	(CIM)		(DDM		
EST TUST OF					1st Reading: 8:00 A.M. Temp. 80°F	1
EW4					Air valve was closed I turn	
VSI	50	1.2	1111			\neg
Control Comments Control Control		73	115"		2nd Reading 2.00P.M.	
Figure VS2	100	202	<u> </u>		Pressure 16.9" Temp: 92°F	
rivers VDI					11; nlet = 326.4	
F(i) $> F(i)D2$		ì		1 1	Martlet /2' inld : 8.1	
等。 多数 的D3-08-04-					2'autlet: 6.6	
7 2 1 D4	36				20114	
The state of the s	65	-				\dashv
VDS 4	<u> </u>					
10^{-2} , $VD6$						
SACORDA VOZASTA				.	·	
Monitoring Devic			·		Calibration (type/date):	
	70 <u> </u>					
	T T			Addivional No	118S	anese.
Collect	hamosed.	1 outle	Army 15	1.1/52, to	warm I lot Parman Chillot and So-	_,}
1. A H L	July 1 or		your U.	1 1 0 10 1 10	my they, permany orwy, and, seco	uolo
1. Chillot					imory Inlet, Erimory Outlet, and Seco	. .
Journal *	•				•]
1						- 1

SIFE INFORMATION Client/Site: Pilot Chemical Company Address: 11756 Burke Street, Santa Fe Springs 250 Scfm Carbon Unit: Project No: 0105.0090.001.001 Permit No.: F79822 Teclmicianis Initials: FT 7 Date: 7/11/07 Arrival Status. ON) / OFF Alarms: GARBON FILTER INFORMATION ABOVE , PID Reading Primary Canister Inlet (ppm): 281.6 Secondary Canister Inlet (ppm): 0.4 Primary Canister Outlet (ppm): 0.4 Secondary Canister Outlet (ppm): 0.0 Dilution\$Valves# \$4 Manual (% open): Operating/Hours Total Hours: Cummulative Hours: Knockout Pot Total Gallons: Cummulative Gallons: Y/N Drained: Extraction System Influent Flow Rate (cfm): Lubricated: Y/N 15.5" Extraction System Influent Vacuum: Temp @ carbon Influent Extraction System Vacuum @ knockoff pot Temp @ heat exchanger influent Pressure @ outlet of heat exchanger Extraction System Pressure @ inlet to heat exchanger PROCESS DATA *** Well^{ag}o Flow Rate PID Reading WELLNO . Vacuum at Well Head Comments Opens ### (cfm) (ppm) SEE SEE WA Temp. 80° F (8:00 A.M.) EW4 for EW4VSI . =:VDI=#=-#= VD2 Note to VD3 to Leave *VD4 ₩ww.ps VD6(1) VD7-1 Monitoring Device Calibration (type/date): Additional Notes

PACIFIC GE

SVE System Mo. ing Log

SHEINFORMATION Client/Site: Pilot Chemical Company 11756 Burke Street, Santa Fe Springs Address: 250 Scfm Carbon Unit: Project No: 0105.0090.001.001 Permit No.: F79822 Bechtuoran Artival/Status Initials: F72 Date: 7/12/07 ON 7 OFF Alarms: CARBONEIL TERRINFORMATION PID Reading Primary Canister Inlet (ppm): 287. 8 Secondary Canister Inlet (ppm): 0.0 Primary Canister Outlet (ppm): 0.0 Secondary Canister Outlet (ppm): 0.0 Dilution Valves 🛣 Manual (% open): Operanne Hours 🤣 Total Hours: Cummulative Hours: Knockout:Pot Cummulative Gallons: Total Gallons: Drained: Y/N Extraction System Influent Flow Rate (cfm): Y/N Lubricated: Extraction System Influent Vacuum: 17-0 * Temp @ carbon Influent Vacuum @ knockoff pot Atraction System : Temp @ heat exchanger influent Extraction System: Pressure @ outlet of heat exchanger Pressure @ inlet to heat exchanger PROCESS DATA Well²o, PlowRate, (Open : ***(ctm) PID Reading WELLINO: Vacuum at Well Head Comments: (ppm). er et propertie 82°F (8:00 A.M) $FW4^{out}$ VS1 $u_{s} = v_{s}^{2} + v_{s}^{2}$ *****VD1 VD2-_ -VD3 Jan. V.D.5 VD6 $VD7^{\circ}$ Monitoring Device: Calibration (type/date): Additional Notes

SIDE INFORMATION Pilot Chemical Company Client/Site: Address: 11756 Burke Street, Santa Fe Springs Unit: 250 Scfm Carbon Project No: 0105.0090.001.001 Permit No.: F79822 Techtician Initials: 213 7-13-04 Date: Abhiyal:Status:/// ON OFF Alarms: # apropreadings CARBON FILTER INFORMATION Primary Canister Inlet (ppm): 320. Secondary Canister Inlet (ppm): Primary Canister Outlet (ppm): Secondary Canister Outlet (ppm): O Dilution:Valvers 4 Manual (% open): beraung Hours & G Total Hours: Cummulative Hours: Knockout Por Total Gallons: Y / N Cummulative Gallons: Drained: Extraction System? Influent Flow Rate (cfin): Lubricated: Y / N Extraction System 💎 Influent Vacuum: Temp @ carbon Influent Extraction System Vacuum @ knockoff pot Temp @ heat exchanger influent Extraction System Pressure @ outlet of heat exchanger Pressure @ inlet to heat exchanger PROCESS DATA** av acouments Well Heati Well¹/₀ Flow Rate Copen (Com) PID.Reading ZAW<u>EILIN</u>O -Comments Open (ppin): 3TWSEE SEE LINA · \$ * \$ 'VSI Time 9:45 A-TEMP- 90° ALISS VDI $M_{
m c}$, if $\mu \in VD2$ and $\mu \in \pi$ ER EXWDS HER * AP VD5 $-4^{\prime\prime}$, $^{\prime\prime}$, $^{\prime\prime}$, $^{\prime\prime}$, $^{\prime\prime}$, $^{\prime\prime}$, $^{\prime\prime}$, $^{\prime\prime}$, $^{\prime\prime}$ 1505% D**D**73 - 53 - 5 Monitoring Device Calibration (type/date): Additional Notes in the company of t

Community Comm	Washing the Contract of the Co	O TO DISTRICT THE CONTROL OF THE CON	
Address: J1756 Burke Street, Santa Fe Springs Project No: 0105.0090.001.001 Permit No: F79822 Permit N	Cliant/Citat	Bilet Chamical Common STREINFORMASHON	
Permit No. F79822 Date: 7/4/07			11.16 250 C-40. Ct. 1
Date: 7/16/07 Primary Canister Inlet (ppm): 1.8 Secondary Canister Inlet (ppm): 1.8 Primary Canister Inlet (ppm): 1.8 Primary Canister Inlet (ppm): 1.8 Secondary Canister Inlet (ppm): 1.0 Manual (% open):	•		
Primary Canister Inlet (ppm): 1.8 Secondary Canister Inlet (ppm): 1.8 Primary Canister Inlet (ppm): 1.4 Primary Canister Outlet (ppm): 1.6 Secondary Canister Outlet (ppm): 1.6 Manual (% open):			
Primary Canister Inlet (ppm): 1-8 Primary Canister Inlet (ppm): 1-8 Primary Canister Inlet (ppm): 1-8 Primary Canister Inlet (ppm): 1-8 Primary Canister Inlet (ppm): 1-8 Primary Canister Inlet (ppm): 1-6 Manual (% open): Total Hours: Total Hours: Total Hours: Total Gallons: Cummulative Gallons: Drained: Total Hours: Temp @ carbon Influent Temp @ heat exchanger influent Temp @ heat exchanger influent Temp @ heat exchanger influent Temp @ heat exchanger influent Temp @ heat exchanger influent Temp @ heat exchanger PROCESSIDATA *** **Well St. ** **Well St. ** **Well St. ** **Well St. ** **Well St. ** **Well St. ** **Well St. ** **Well St. ** **Well St. ** **Tild Reading: 2:3a P.m. Temp & 2 F. Peassure: 18:2 **Vol. ** **Vol	Adrival Status a		Date. ///6/0/
Primary Canister Inlet (ppm): 1-8 Primary Canister Inlet (ppm): 1-8 Primary Canister Outlet (ppm): 1-8 Primary Canister Outlet (ppm): 1-8 Primary Canister Outlet (ppm): 1-6 Primary Canister Outlet Outlet Outlet (ppm): 1-6 Primary Canister Outlet Outlet Outlet (9 1 -2 1	ATION
Primary Canister Outlet (ppm): 1-6	DIANTO 41		
Manual (% open): Operating Hours			
Total Gallons: Cummulative Gallons: Drained: Y / N Stration Strate Uniform Flow Rate (cfm): Lubricated: Y / N Uniform Flow Rate (cfm): Lubricated: Y / N Temp @ carbon Influent Vacuum @ knockoff pot Pressure @ outlet of heat exchanger Pressure @ outlet of heat exchanger PROCESSDATA *** **PELL NO. 17 ** **Well at How Rate (cfm): Temp @ heat exchanger PROCESSDATA *** *** **PELL NO. 17 ** *** **Well at How Rate (cfm): Temp @ heat exchanger PROCESSDATA *** *** *** *** *** *** ***	Dijution Valve		
Influent Flow Rate (cfm): Unificated: Unif	Operating Hours	Total Hours:	Cummulative Hours:
Influent Flow Rate (cfm): Itraction System Influent Vacuum: Inf	Knockout Pot	Total Gallons: Cummulative Gallons:	Drained: Y / N
Temp @ carbon Influent Temp @ heat exchanger influent Temp @ heat exchanger influent Temp @ heat exchanger Pressure @ outlet of heat exchanger Pressure @ inlet to heat exchanger Prosure @ inlet to heat exchanger Prosure @ inlet to heat exchanger Prosure @ inlet to heat exchanger Prosure @ inlet to heat exchanger Prosure @ inlet to heat exchanger Prosure @ inlet to heat exchanger Prosure @ inlet to heat exchanger Prosure @ inlet to heat exchanger Prosure @ inlet to heat exchanger Prosure @ inlet to heat exchanger Prosure @ inlet to heat exchanger Prosure @ inlet to heat exchanger Prosure @ inlet to heat exchanger Prosure @ inlet to heat exchanger Prosure @ inlet to heat exchanger Prosure @ inlet to heat exchanger Prosur	Extraction System	Influent Flow Rate (cfm):	
Vacuum @ knockoff pot Temp @ heat exchanger influent Pressure @ outlet of heat exchanger Pressure @ inlet to heat exchanger Pressure @ i	CONTRACTOR OF A CONTRACTOR OF THE PROPERTY OF		
Pressure @ outlet of heat exchanger PROCESSIDATA WEIL NO. 18 Well Work (cfm) Watuumst Well Head (ppm) St. Temp. 8 2 F (8:co A.m.) Air valve was closed I full turn to bring up entractions. WAS 2 DA Resoling: 2:30 P.m. PROCESSIDATA PRO	Extraction System : 3 -	Vacuum @ knockoff pot	
### PROCESSIATA ##################################	23 5 C 22 C C C C C C C C C C C C C C C C		
WEID NO SE Well? How Rate Comments Well Head PDReading Comments Services (cfm) FINA Temp. 8 2°F (8:00 A.m) Air valve was closed I full turn to bring up extractions. VIST EMP I DO F Pressur: 18.2 VIDIS 1 100°F Pressur: 18.2 1' in let: 470.2 1' out let / 2' in let: 4.9 VIDIS 1 2 loutlet: 4.9 Wintsoning Device Calibration (type/date):			
Temp. 82'F(8:co A.m) Air valve was closed I full turn to bring up entractions. 2.30 D.m. 7.01 Temp. 82'F(8:co A.m) Air valve was closed I full turn to bring up entractions. 2.30 D.m. Temp. 100°F Pressure: 18.2 1' in let: 470.2 1' in let: 470.2 1' out let / 2' in let: 6.1 21 out let: 4.9 Whomiosing Device. Calibration (type/date):			
Temp. 82'F(8:co A.m) Air valve was closed I full turn to bring up entractions. 2.30 D.m. 7.01 Temp. 82'F(8:co A.m) Air valve was closed I full turn to bring up entractions. 2.30 D.m. Temp. 100°F Pressure: 18.2 1' in let: 470.2 1' in let: 470.2 1' out let / 2' in let: 6.1 21 out let: 4.9 Whomiosing Device. Calibration (type/date):	PRWEITENO.	Well-20 Howkare Wacuumsat Well Head	Comments was a serious and the
Air valve was closed I full turn to bring up entractions. 1852 2nd Reading: 2:30 p.m.		Appen a faction of the faction of th	
Air valve was closed I full turn to bring up entractions. 1852 2nd Reading: 2:30 p.m. Temp: 100° F Pressure: 18:2 1'inlot: 470-2 1'outlet 2'inlot: 6:1 2loutlet: 4-9 Monitoring Device Calibration (type/date):	PARTIE VILLA	2	Temp. 82° F(8:00 A.M)
Extractions. 2nd Reading: 2:30 P.M. Temp: 100°F Pressure: 18:2 1'inlot: 470:2 1'out let / 2'inlot: 6:1 2loutlet: 4:9 Monitoring Device: Calibration (type/date):	$E_{\mu} = E \mu \mu \mu$		
2nd Reading: 2:30 P.M.	VSI		· I
VD	VS2		
1' in 10 t : 470 · 2 1' out let / 2' in 10 t : 6 · 1 2! out let : 4 · 9 2! out let : 4 · 9 Calibration (type/date):	AND A SAFE OF THE PROPERTY OF		
Voit let / 2! in let : 6 . 2 out let : 4 . 9 VD6 Meditoring Device Calibration (type/date):	per part and personal entrance and the second and the second and the	<u></u>) · •
PDS: UDS: UDS: UDS: UDS: UDS: UDS: UDS: Calibration (type/date):	283,242,333,443,473,473,473,473,473,473,473		
VDS VDS VDS Calibration (type/date):	Approximate distance activities and interest and interest and activities activities and activities activities and activities activities and activities activities and activities activities activities activities and activities acti		1' out let / 2' in lot: 6.1
Wenttoring Device: Calibration (type/date):	77 52 64 54 54 54 54 54 54 54 54 54 54 54 54 54		2loutlef: 4.9
Monitoring Device: Calibration (type/date):	ADDRESS PROGRAMMENT OF THE PROGR	· ch	
Monitoring Device: Calibration (type/date):	VD6		
	1. 5. VD7.5.		
	Monitonne Device		Calibration (type/date):
		Additional Notes	

STEENFORMATION Client/Site: Pilot Chemical Company Address: 11756 Burke Street, Santa Fe Springs Unit: 250 Scfm Carbon Project No: 0105.0090.001.001 Permit No.: F79822 Technician y Initials: 巨フラ Date: 7/17/07 Arbival Status ON) / OFF Alarms: #RID Reading CARBON PILITERANHORM ATRIONS Primary Canister Inlet (ppm): 3 76.8 Secondary Canister Inlet (ppm): 0.0 Primary Canister Outlet (ppm): 0.0 Secondary Canister Outlet (ppm): 0.0 Dilution/Valvey Manual (% open): Operating Hours Total Hours: Cummulative Hours: Knockout Por Total Gallons: Cummulative Gallons: Drained: Y / N Extraction System Lubricated: Y/N Influent Flow Rate (cfm): Extraction System (1890) Influent Vacuum: Temp @ carbon Influent Extraction System Vacuum @ knockoff pot Temp @ heat exchanger influent Extraction System a c Pressure @ outlet of heat exchanger Pressure @ inlet to heat exchanger PROCESSDATA Well % Flow Rate Vacuum at Well Head WELENO PID Reading Comments: (ppm) EW4full turn VSI^{*} 2nd Roading: (2:00 D.m. ν S2 $\sim \nu D T$ VD2VD3D'in4t: 2.7 VD4 SES VD5 $\vec{v} = \vec{v} \cdot \vec{v} \cdot \vec{D} \vec{o}$ V VDFV Monitoring Device Calibration (type/date): Additional Notes

SITE INFORMATION Client/Site: Pilot Chemical Company Address: 11756 Burke Street, Santa Fe Springs Unit: 250 Scfm Carbon Project No: 0105.0090.001.001 Permit No.: F79822 Dechnician | Initials: _FT2 Date: 7//8/07 ArfivaleStatus and see-ON / OFF Alarms: CARBON FILTER INFORMATION Primary Canister Inlet (ppm): 526.0 4.3 Secondary Canister Inlet (ppm): 0.0 Primary Canister Outlet (ppm): 0.0 Secondary Canister Outlet (ppm): 0 - 8 Dilution Valveration Manual (% open): Operating Hours Total Hours: Cummulative Hours: Knockout Pota Y 100 Total Gallons: Cummulative Gallons: Drained: Extraction/System Influent Flow Rate (cfm): Y / XV) Lubricated: 15.0 7 Extraction System Influent Vacuum: Temp @ carbon Influent Extraction System Vacuum @ knockoff pot Temp @ heat exchanger influent Extraction System Pressure @ outlet of heat exchanger Pressure @ inlet to heat exchanger PROCESS DATA Weij[®]@#|#JowRate PIDAReading Vacuum at Well Head WELLING Comments. (ppm) EW3 550 EW4VSI. 2nd Reading: 2:00 P.M ν s2 $\iota : VDI$ VD2 $\nu \bar{p} \bar{s}$ VD4VD5 Ψ. VD6 $^{\prime\prime}$, $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$ Monitoring Device: Calibration (type/date): Message Additional Notes

PACIFIC GE

SVE System Mo.

	STREINFORMS	IION
Client/Site:	Pilot Chemical Company	
Address:	11756 Burke Street, Santa Fe Springs	Unit: 250 Scfm Carbon
Project No:	0105.0090.001.001	Permit No.: <i>F79822</i>
Technician Artival Status	Initials: = 1 ? ON OFF Alarms:	Date: 7/19/07
municational and section		ORMATION
	Primary Canister Inlet (ppm): 686.8	
#* PID Readings	Primary Canister Outlet (ppm): 000	Secondary Canister Inlet (ppm): O.O Secondary Canister Outlet (ppm): O.O
Dilition Valve	Manual (% open):	Secondary Camster Outlet (ppin). O. O
Operating Hourses	Total Hours:	Cummulative Hours:
DESCRIPTION OF THE PROPERTY OF THE PROPERTY AND ADDRESS OF THE PROPERTY OF THE		
KinockoutPot	Total Gallons: Cummulative Gallons:	Drained: Y / N
Extraction System -	Influent Flow Rate (cfm):	Lubricated: Y/N
Extraction System	Influent Vacuum: 15.5 5	Temp @ carbon Influent
Extraction System	Vacuum @ knockoff pot	Temp @ heat exchanger influent
Extraction System	Pressure @ outlet of heat exchanger	Pressure @ inlet to heat exchanger
	PROCESS D	
	well % Flow Rate? Flow Rate? PiD/R	acclina
AS AVELENO.		Comments as 142.
**************************************		Temp. 82° F (7:00 A.M.)
THE THE STREET		
13.5 VS1		
VS2		
A CONTRACT OF THE PROPERTY OF		
Single VDI		
\$a νD2		
³ γ γD3		
30.5° VD4		
ising VD5	30	
VD6		
25.222.57.002.50.00.7967.7965.007.007.507.257.257.00.00.00		
3 (1/D7)		
Monitoning Device		Calibration (type/date):
	Additional N	iotes
	·	

STEPINEORYIA/HONZ Client/Site: Pilot Chemical Company 11756 Burke Street, Santa Fe Springs Address: 250 Scfm Carbon Unit: Project No: 0105.0090.001.001 Permit No.: F79822 Lechincian e Initials: Date: ON OFF Autival Status (2004) Alarms: CARBON FILTER INCORMATION 868 Primary Canister Inlet (ppm): Secondary Canister Inlet (ppm): Primary Canister Outlet (ppm): 0.6 Secondary Canister Outlet (ppm): DilutionWalve 7. 5 Manual (% open): Total Hours: Operating Hours Cummulative Hours: Kingekout Pot Total Gallons: Y //Ŋ Cummulative Gallons: Drained: Extraction System 240 Influent Flow Rate (cfm): Lubricated: 7.5" Extraction System 20 Influent Vacuum: Temp @ carbon Influent 34 Extraction System Vacuum @ knockoff pot Temp @ heat exchanger influent Extraction System Pressure @ outlet of heat exchanger Pressure @ inlet to heat exchanger PROCESS DATA Well of FlowRate Super Com. Wacuumat Well Head PID/Reading (ppm) 2-2 WELLING Comments EW^{3} 50 *.VS1 100 VS2 ₽ĎI 10° at $VD2^{\circ}$ ALIVOS PARTES (4) \$8 P. V. D. 4 YVD5 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ A PARTIDO Monitoning Device: Calibration (type/date): Additional Notes

	jek zaraten de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de La calacteria de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie	the STEINFOR	MATION:			
Client/Site:	Pilot Chemical Company					
Address:	11756 Burke Street, Santa I	Fe Springs	Unit:	250 Scfm Carbon		
Project No:	0105.0090.001.001			lo.: <i>F79822</i>	·	
Technician -	Initials:	19	Date:	7/24/07		
Amiyal Status 😅 🗝 🖽	ON 7 OFF A	arms: non				
		CARBONFILTER	the state of the same of the state of the st			
a wallDireading	Primary Canister Inlet (ppm			ry Canister Inlet (ppm		
The second second second second second second second second second second second second second second second se	Primary Canister Outlet (pp	m):	Seconda	ry Canister Outlet (pp.	m): O-4	·
Dilution Walve - 100 s.v.	Manual (% open):	10000				
Operating Hours	Total Hours:	10053.5	Cummul	ative Hours:		
Knockout Pot	Total Gallons: Ci	ummulative Gallons:	Drained:		7 /(N)	
Extraction System 📜 🤻	Influent Flow Rate (cfm):	~230	Lubricat	ed:	YMD	
Extraction System	Influent Vacuum:	17.5"	Temp @	carbon Influent	126	
Extraction System	Vacuum @ knockoff pot	8.8"		heat exchanger influe		5
Extraction System	Pressure @ outlet of heat ex			@ inlet to heat excha		7
		PROCES				
		Secretary and the second second second				areas and a second
- WEELNO	Well 20 FlowRate	Vacuum at Well Head:	D Reading	e e e	minents.	
	Open so (ctm)s = e		(ppm)***	and the second second		resident residence
EW.				ACTOR STATES OF THE STATES OF		
The state of the s						
EW4						
VSI - i	50 2.5					
u S = V S 2	100 5.1					•
WDI						
121 11 1 V D2						
the state of the second control of the secon						
Franklin VD3						
$VD4 \times 3$		è				
$ u_{0}$, $ u_{0}$						
$VD6^{-1}$						
$V\bar{D}7$						
A PROPERTY OF THE PROPERTY OF		1-1		· · · · · · · · · · · · · · · · · · ·	5/21/	1/4-
Monttoning Device	E	١١)	Calibrat	tion (type/date):	exoul //24	1/07
	31.00		al Notes		100	
. Close N	1t. 111	1 1	-TI.	<i>1</i> 、	•	
. we D	ilution Valve by	12 Nurn after	Taking read	leages		
	. //	<i>V</i>	V			
İ						

PACIFIC GE

SVE System Mo. ling Log

		Control Probabilistic and the Control of the Contro	EINEORMATION	
Client/Site:	Pilot Chemical Company			
Address:	11756 Burke Street, San			Unit: 250 Scfm Carbon
Project No:	0105.0090.001.001			Permit No.: <i>F79822</i>
Technician (1997)	Initials: FT2	THE STATE OF THE S		Date: 7/25/07
AdivalStatus	ON / OFF	Alarms:		
			FILTER INFORM	ATION
	Primary Canister Inlet (p		. 1008	Secondary Canister Inlet (ppm): 1.5
Dilition Valva 18	Primary Canister Outlet (Manual (% open):	ppin): 7.5	1.7	Secondary Canister Outlet (ppm): 1. 2 / 4.3
Operating Flours	Total Hours:	1008	M a	Cummulative Hours:
Knockout/Pot				
CONTROL OF THE PROPERTY OF THE	Total Gallons:	Cummulative Gallon	S:	Drained: Y / N
Extraction System?	Influent Flow Rate (cfm)		14.6	12.0
Extraction-System		7.0"	18.0	Temp @ carbon Influent 129
Extraction System :	Vacuum @ knockoff pot		5./	Temp @ heat exchanger influent 445
Extraction System 😅	Pressure @ outlet of heat		Ma	Pressure @ inlet to heat exchanger
	Margarity of the second		PROCESSIDATA	
	Well % Flow Rate		PID Reading	
WELLINO	Open (cim):	Vacuum ar Wellsh	lead (ppin)	Comments (4)
LW_{0}				Temperature: 97.5° F (10:30 AM)
EW4				
$V_{ij} = V_i V_{ij}$	96 N			
νs_2	100 12	2.5"	h/a -	-> extinguished flame in FID
$\overline{\nu}_{D1}$				77 (17) W 20190 11 Wale 14
The state of the s		 		
2 3 1 VD2		<u> </u>		
* 1 VD3 : 24			· · ·	
VD4				
15 VD5				
VDG				

THE PROPERTY OF THE PROPERTY O		<u> </u>		Calibration (type/date):
Monitoring Device	© 			
			Additional Notes	- 4
. Close l	15 , Collect	hagged som	uple from P.	Inlet, P. Outlet, and, S. Outlet, + VS
Ropland In	on much holis	Tabi in	' / · · · ·	, , , , , ,
1 sopreces more	fruit refore	varing severing	is sampling.	·

S SUFFINEORMATION Client/Site: Pilot Chemical Company Address: 11756 Burke Street, Santa Fe Springs Unit: 250 Scfm Carbon Project No: 0105.0090.001.001 Permit No.: F79822 Technician Initials: Date: 7-26-07 Artival-Status 4,888 Alarms: CARBON FILTER INFORMATION FID Reading Primary Canister Inlet (ppm); Secondary Canister Inlet (ppm): Primary Canister Outlet (ppm): Secondary Canister Outlet (ppm): Dilution/Valvet 33 Manual (% open): Operating Hours Total Hours: Cummulative Hours: Knockout Pot Total Gallons: Cummulative Gallons: Drained: Y / N Extraction System Influent Flow Rate (cfm): Y/N Lubricated: Extraction System Influent Vacuum: Temp @ carbon Influent Extraction System Temp @ heat exchanger influent Vacuum @ knockoff pot Extraction System ... Pressure @ outlet of heat exchanger Pressure @ inlet to heat exchanger PROCESS DATA: Nacuum ad Well Head Wells% Flow Rate Copen * *2(cim) PID Reading WELLNO: Comments: (ppm) is a set to the set of SHOT DOWN. EW4** - 15 (** 1**//S**2) (** ν S2 $i_1^{i_1} i_2^{i_2} i_1^{i_2} i_D^{i_1} I$ 7 \times 1 1 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1 \times $V\bar{D}^{3}$ FAC VD4 15° VD5 ν p6 $k_{T}^{2}k_{T}^{2}+VD7^{2}$, where Monitophy Device: Calibration (type/date): Additional Notes

PACIFIC GE

SVE System Mo.

	TO THE SELECTION OF SELECTION O			
Client/Site:	Pilot Chemical Company			
Address:	11756 Burke Street, Santa Fe Springs	Unit: 250 Scfm Carbon		
Project No:	0105.0090.001.001	Permit No.: <i>F79822</i>		
lechniotan *** ** is Abbwal Status *** ********************************	Initials: PTZ	Date: 8/2/07		
Convar Status#Same				
	GARBON FILTER INFORM	Control Control and Control an		
- PID Reading	Primary Canister Inlet (ppm): 1033	Secondary Canister Inlet (ppm): 7.6		
Dilution Valve	Primary Canister Outlet (ppm): 7.4 Manual (% open):	Secondary Canister Outlet (ppm): 55		
<u> Opëraung Hours 🦠 🥃</u>	Total Hours:	Cummulative Hours:		
Kuockout Pot 🤫 🔫	Total Gallons: Cummulative Gallons:	Drained: Y / N		
extraction System	Influent Flow Rate (cfm):	Lubricated: Y / N		
extraction System	Influent Vacuum: 18.3	Temp @ carbon Influent		
Extraction System	Vacuum @ knockoff pot	Temp @ heat exchanger influent		
Extraction System 4	Pressure @ outlet of heat exchanger	Pressure @ inlet to heat exchanger		
	PROGESSIDATA			
The second second				
WELL-NO.	- Well of PilowRate Vacuumat Well Head, 18	Comments # 200 Commen		
	(ppm)			
EW3		System was turned back in a gain & Pist		
EW4		System was turned back on again & 9130		
		Temp. 100° F (2:30 P.M.)		
$\mathcal{VS}I$		Temp. 100° F (2:30 P.M.)		
VS2				
$\langle v_{ij} \rangle \approx VDI$				
- LELEN VD2				
(4.10° (5.15°) V D 3 (4.10°)	ACEDIA ACEDIA ACEDIA			
CONTRACTOR OF THE PROPERTY OF				
**				
VD5				
VD6				
**************************************		•		
≱/⊈Moπitoring Devi	71. (1)	Calibration (type/date):		
37-10/11/24/16				
	Additional Notes			
Marie Control of the	·			

	STEELINFORMATION		
Client/Site:	Pilot Chemical Company		
Address:	11756 Burke Street, Santa Fe Springs	Unit: 250 Scfm Carbon	
Project No:	0105.0090.001.001	Permit No.: <i>F79822</i>	
Technician	Initials: FT Z	Date: 8/3/07	
Artival Status	<u> </u>		
	GARBON FILTER INFORM		
nest PiDaReading	Primary Canister Inlet (ppm): 10 42 Primary Canister Outlet (ppm): 6.0	Secondary Canister Inlet (ppm): 6.6	
Dilution Valve	Manual (% open):	Secondary Canister Outlet (ppm): 5. #	
Operating Hours	Total Hours:	Cummulative Hours:	
Contraction of the Contraction o			
Kniekout/Pot	Total Gallons: Cummulative Gallons:	Drained: Y / N	
Extraction System 2	Influent Flow Rate (cfm):	Lubricated: Y / N	
Extraction System	Influent Vacuum: 15.5"	Temp @ carbon Influent	
Extraction System 9	Vacuum @ knockoff pot	Temp @ heat exchanger influent	
Extraction System	Pressure @ outlet of heat exchanger	Pressure @ inlet to heat exchanger	
	PROCESSIDATA		
	Wellson EllowRate www.		
WELLNO	Well?", FlowRate Vacuumat Well Heads (ppm)	de la la la la la la Comments de la la la la la la la la la la la la la	
		18+ Reading: 9:30 Am Temp: 90%	
which is $EV4^{++2}$		Air valve was opened 21/2 turns to make	
VSI.		adjustments for upcoming weakend.	
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2nd Reading: 3:00p.m.	
$\langle \phi_{j}, T \rangle \otimes VDI$, $\phi_{j} = \phi_{j}$		Pressure: 18.9" Temp. 105 F	
70° 23 VD2		1' inlet: 372 4 ppm	
VD3		1 11 /2': - 1 + · 4 2 PPM	
14 38 3 VD4		700 10 700	
17 September 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 out 10: 3.4 ppm.	
2.5 VD5			
VD6			
- X VD7			
Monitoring Device		Calibration (type/date):	
	Additional Notes		

PACIFIC

SVE System Mo ling Log

SIPEI	NEORMAJION
Client/Site: Pilot Chemical Company	
Address: 11756 Burke Street, Santa Fe Springs	Unit: 250 Scfm Carbon
Project No: 0105.0090.001.001	Permit No.: <i>F79822</i>
Technician Initials: FIE	Date: 8/6/07
AFFINAL STATUS ON OFF Alarms:	
	TERINFORMATION
Primary Canister Inlet (ppm): 317.2	Secondary Canister Inlet (ppm): 2.3
Primary Canister Outlet (ppm): 2.3	Secondary Canister Outlet (ppm): 2.1
Dilution Valves Manual (% open):	
Operating Hours: Total Hours:	Cummulative Hours:
Knockout Por Total Gallons: Cummulative Gallons:	Drained: Y / N
Extraction System Influent Flow Rate (cfm):	Lubricated: Y / N
Extraction System Influent Vacuum: 13.5"	Temp @ carbon Influent
Extraction System Vacuum @ knockoff pot	Temp @ heat exchanger influent
Extraction System Pressure @ outlet of heat exchanger	Pressure @ inlet to heat exchanger
	DGESSDATA CONTRACTOR OF THE STATE OF THE STA
WELL NO. Well Cos FlowRate Vacuumsat Well Hea	d PID Reading
(CHIII)	(ppm)
	Air valve was closed 21/2 turns. 2nd Reading: 2:15 p.m. Temp 100'F
ЕИ4	Air valve was closed 21/2 turns.
VSI ""	2nd Randing . 2:15 p.m. Temp M'F
VS2	2nd Reading: 2:15 p.m. Temp 100'F Pressure: 17.0"
VDA	1'inlot: 1132
$\frac{\mathcal{V}_{2}}{\mathcal{V}_{2}}$	
The age of the control of the contro	2'05167.5 3.2
CVD3	1'autlef/2'inlot: 3.8
ND4	
Ye VDS	
VD6	
74. VD7	
: V:: Mönitönng: Device:	Calibration (type/date):
	ditional Notes
· · · · · · · · · · · · · · · · · · ·	

PACIFIC

SVE System Mo ling Log

Managara Parangan Santan	SVE System Mo. Jing L		
	SITEINFORMATION		
Client/Site:	Pilot Chemical Company		
Address:	11756 Burke Street, Santa Fe Springs	Unit: 250 Scfm Carbon	
Project No:	0105.0090.001.001	Permit No.: <i>F79822</i>	
Technician Addival Status	Initials: FC2 QN)/ OFF Alarms:	Date: 8/7/01	
Antinival pudus	CARBON FILEERINFORM	XETI (AN)	
AND THE PROPERTY OF THE PROPER	Primary Canister Inlet (ppm): 873-1	Secondary Canister Inlet (ppm): 1. 3	
rest PID/Reading	Primary Canister Outlet (ppm): 1-3	Secondary Canister Outlet (ppm): \.	
Dilution Valve	Manual (% open):	posterior of other (ppin).	
Operating Hours	Total Hours:	Cummulative Hours:	
Knockout Pot	Total Gallons: Cummulative Gallons:	Drained: Y / N	
Extraction System	Influent Flow Rate (cfm):	Lubricated: Y / N	
Constitution of the Consti			
Extraction System ***		Temp @ carbon Influent	
Extraction System	Vacuum @ knockoff pot	Temp @ heat exchanger influent	
Extraction System	Pressure @ outlet of heat exchanger	Pressure @ inlet to heat exchanger	
	PROCESS DATA		
WELL NO	Welly of PlowRate Nacuumat Well Heads Pin Reading	Comments 2	
	Open (cim) Nacuum at Well Head (ppm)	Continents	
Language EW3			
AND THE PROPERTY OF THE PROPER		2nd Reading: 8:00 AM. Temp: 80's 2nd Reading: 2:30 P.M. Temp: 100 F Pressure: 16.75"	
EW4		2nd Reading: 2:30 P.M.	
1/2 / 1/S <i>I</i>		Tomp: 1000 F Dressure: 16.75	
10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		130/04:1136 PPM	
Symple RVD1		ioutlet (21 in) et = 3.5 Ppm	
$ u_{D}^{2}$		100111111111111111111111111111111111111	
Constraint and the state of the		2 outlet: 2.8 ppm	
VD3	<u> </u>		
3 (2 VD4			
34 3 VD5 + 35			
$ \overline{\nu}D6 $			
1885 F. VD7.			
Monitoning Device		Calibration (type/date):	
A CONTROL OF THE CONTROL			
	Additional Notes		
	·		

SITEINFORMATION Client/Site: Pilot Chemical Company Address: 11756 Burke Street, Santa Fe Springs Unit: 250 Scfm Carbon Project No: 0105.0090.001.001 Permit No.: F79822 Initials: F77 PN/ OFF lechnician 🛠 🐣 🛠 Date: 8/8/07 Aprival Status Alarms CARBON CHITERINFORMATION (1997) द्यपुत्र Primary Canister Inlet (ppm): 1050 Secondary Canister Inlet (ppm): 44 -PID Reading Primary Canister Outlet (ppm): 1.0 Secondary Canister Outlet (ppm): 4.4 Dilution Valve Manual (% open): Operating Hours Total Hours: 10251 Cummulative Hours: Y/N Knockout Pot Total Gallons: Cummulative Gallons: Drained: $\overline{Y}/\overline{N}$ Extraction System Influent Flow Rate (cfm): Lubricated: Extraction/System*** 14.5 Influent Vacuum: Temp @ carbon Influent Extraction System Vacuum @ knockoff pot 6.2 Temp @ heat exchanger influent Pressure @ outlet of heat exchanger Extraction System Pressure @ inlet to heat exchanger /I/a PROCESSDATA . Vacuumat WéllaHead Well²/₀ ZFlow Rate Open 2 3 (cfm) s PID Reading WELL NO. Comments (ppm) = 2 EW3 15t Reading: 8:00 AM Temp: 82°F EW4VSJ-VS2 7.7" 9.05 VDI***** VD2 VD3***VD4 VD5 $\pm i \, VD6$ $4\pi V D7$ Monitoring Device: Calibration (type/date): 'Additional'Notes Collect bagged sample from Secondary Outlet, Primary Patlet, and Primary Inlet. Shut system down. Sergio (Besco Environmental) an site to replace ail filter #3. Start system, take buch, sample after litting system sun ~ / hour.

	SITE INFORMATIO	N		
Client/Site:	Pilot Chemical Company			
Address:	11756 Burke Street, Santa Fe Springs	Unit: 250 Scfm Carhon		
Project No:	0105.0090.001.001	Permit No.: <i>F79822</i>		
Rechrician,	Initials: FTZ	Date: 5/9/07		
Amival Status	QNy OFF Alarms:			
Control of the contro	GARBON FILTERINFOR			
PIDReading	Primary Canister Inlet (ppm): 1045	Secondary Canister Inlet (ppm): 1.8		
	Primary Canister Outlet (ppm): 1.8	Secondary Canister Outlet (ppm): 1.2		
Dilution/Valvers	Manual (% open):			
Operating/Hours	Total Hours:	Cummulative Hours:		
Knockout Pot	Total Gallons: Cummulative Gallons:	Drained: Y / N		
Extraction System	Influent Flow Rate (cfm):	Lubricated: Y / N		
Extraction System:	Influent Vacuum: 16.5"	Temp @ carbon Influent		
Extraction System	Vacuum @ knockoff pot	Temp @ heat exchanger influent		
Extraction-System's	Pressure (i) outlet of heat exchanger	Pressure @ inlet to heat exchanger		
	PROCESSDATA			
a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de				
WELL NO.	P.Well ¹⁹ , FlowRate Vacuuma WellaRead P.D.Readi	ng Commonto		
	70 pen 37 (cim); s			
PART EWS SE		1st Reading: 9104AM Temp: 87"F		
ENGLE ENACTOR				
VSI				
NSŽ	(5)			
STORESTANDON AND ASSESSED ASSESSED.				
VD1				
VD2				
VD3				
1.743.VD4				
was complemented in the production of the first because the begin				
VD6				
27 / 1888 PD7 19 1 5 1 1				
Monitoring Device		Calibration (type/date):		
	Additional Notes			
	the Shit down due to 12	I has buil Cilina a L		
Dy3+	Sur com the to tight	1 PAC OL		
Pum	on Shit down due to light	non operational (6th 8/9/07)		
	·			

PACIFIC GE

SVE System Mo.

	SELETIMEORMATION			
Client/Site:	Pilot Chemical Company			
Address:	11756 Burke Street, Santa Fe Springs	Unit: 250 Scfm Carbon		
Project No:	0105.0090.001.001	Permit No.: <i>F79822</i>		
Technician several acres	Initials: 47 Z	Date: 12/6/07		
Arrival Status				
	GARBON FILTER INFORMA			
i• # RID∮Rēading '-	Primary Canister Inlet (ppm): 751. 6.ppm	Secondary Canister Inlet (ppm): D.SPPm		
	Primary Canister Outlet (ppm): 0 8 9 pm	Secondary Canister Outlet (ppm): n.3 ppm		
Dillution Valva	Manual (% open):	7		
Operating Flours	Total Hours:	Cummulative Hours:		
Kuockout Pot	Total Gallons: Cummulative Gallons:	Drained: Y / N		
Extraction System - 8-	Influent Flow Rate (cfm):	Lubricated: Y / N		
Extraction System	Influent Vacuum: 15" Hg	Temp @ carbon Influent		
Extraction System	Vacuum @ knockoff pot	Temp @ heat exchanger influent		
Extraction System	Pressure @ outlet of heat exchanger	Pressure @ inlet to heat exchanger		
	PROCESSDATA			
WELLINO :	Well 9.6 FlowRate 5. Accum at Well Head: PID Reading	Comments The Section 1988		
	(ppm) (cim)			
LW3 ***		1st Reading: 8:00 Am; value was open 1/2 turn		
A SEW4		to bring up the readings.		
VSI		2nd Reading . 2:00p.M.		
νς2 ******		Temp. 77.50 F Pressure: 15.5" Hg		
**VDI				
The state of the s		1'posted: 671.0 ppm		
VD2		protet/2'inet; 1.6 PPM		
\$ VD3		2' nutlet: 0.0 ppm		
$r \approx 3.5 \mathrm{Fep} 4$				
* 1 VD5				
VD6				
VD7				
Monitophy Device		Calibration (type/date):		
		Canonicon (type date).		
	Additional Notes			

TACTER AT

SVE System Mo.

ent/Site:	Pilot Chemical Compa	The Property of the Control of the C	EINEORMATIO		
ienvane. Idress:				Unit: 250 Scfn	n Carbon
oject No:	0105.0090.001.001	1756 Burke Street, Santa Fe Springs		Permit No.: <i>F79822</i>	u Curijon
dunician, ss. w			······································	Date: 12/7/07	
tival/Status 🖟 🐃	(ON)/ OFF	Alarms:			
				ATION	
#PIDéReading-	Primary Canister Inlet		^	Secondary Canister Inlet (ppm): O.O	
100 miles (Primary Canister Outle	t (ppm): つつ		Secondary Canister Outlet (ppm): 2-0	
ution Valvesz	Manual (% open):	····			
erating/Hours	Total Hours:	· · · · · · · · · · · · · · · · · · ·	·····	Cummulative Hours:	
ockout Pot	Total Gallons:	Cummulative Gallor	ıs:	Drained:	Y / N
taction System	Influent Flow Rate (cfr	n):		Lubricated:	Y / N
raction System	Influent Vacuum:	15" Hg		Temp @ carbon Influ	uent
raction System :	Vacuum @ knockoff p	ot	, .	Temp @ heat exchanger influent	
raction System	Pressure @ outlet of he			Pressure @ inlet to h	
200 200 200			PROCESSEDATA		
	San Lin San Ta				
WELLNO	Well % Elow Ra Open (cim)		PID Réadin	6	Comments
			(ppm)		
$-p_{\theta}ED$				1st Reading.	8:0. AM Temp. 62°F. 1:45 P.M. Temp: 70°F
EW4				2nd Read of	1:45 p.m. Temp: 700/5
γ. e V 81				The court	15.2" Hg
$\nu_{ m S2}$				L'anlet . 78.	
of Subsection of the Control of the				1 onlet . 78:	1. ppm
*VDI	100 M			1'outlet/2'1	nlet: 0.0 ppm
VD2				121 nutlet: 0.0	1000
* VD3 5					·
$^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$			·	oil was a	Hed to the pump.
v. VD5			·		
$\nu D 6$					
νων, 124 VD7+ 24					
Monitoring Dev	15/40/2004			- C 17	
ACT STORY OF THE WAY	MODA!			Calibration (type/da	ie).

PACIFIC GE

SVE System Mo.

	SHEELINFORMATION 22
	Pilot Chemical Company
	11756 Burke Street, Santa Fe Springs Unit: 250 Scfm Carbon
	0105.0090.001.001 Permit No.: <i>F79822</i>
Rechnician P. J.	nitials: 1-7 Date:/2/16/07
Antival Status	ON TOFF Alarms:
	CARBON FILTER INFORMATION
	Primary Canister Inlet (ppm): 5/.5 Secondary Canister Inlet (ppm): (1.6
	Primary Canister Outlet (ppm): 0.6 Secondary Canister Outlet (ppm): 0.6
	Manual (% open):
Control of the Contro	Total Hours: Cummulative Hours:
THE COURSE AND INVESTIGATION AND ADDRESS OF THE PROPERTY OF THE PARTY	Fotal Gallons: Cummulative Gallons: Drained: Y / N
Extraction System. I	nfluent Flow Rate (cfm): Lubricated: Y / N
Extraction System (32)	nfluent Vacuum: 15.0 H.J. Temp @ carbon Influent
Extraction System	Vacuum @ knockoff pot Temp @ heat exchanger influent
	Pressure @ outlet of heat exchanger Pressure @ inlet to heat exchanger
	PROCESSIDATA
The state of the s	
WELLING	Well % Flow Rate Vacuum at Well-Head: PID-Reading Comments of Comm
	(Open (com)) (com) (com) (com) (com)) (com) (com) (com)
EW3**	15+ Repoly : 8:30 A.M. Tamp: 57.5°
Frank EVA	1st Reading: 8:30 A.M. Tango: 57.5°. Air valve was closed 2 turns: bring up The extraction.
VSI	and partition.
VS2	THE CALLEGO ST
TO VDI	
Designation of Control	
VD2	
VD^{3}	
3° , 3° , 3° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1°	
\$2.4VD5	
$I^{(1)} = I D G^{(2)}$	
VD7	
Secure and the second security of the second	
Monitoning Device	Calibration (type/date):
	Additional Notes